Estimating the number of clusters via a corrected clustering instability


We improve instability-based methods for the selection of the number of clusters k in cluster analysis by developing a corrected clustering distance that corrects for the unwanted influence of the distribution of cluster sizes on cluster instability. We show that our corrected instability measure outperforms current instability-based measures across the whole sequence of possible k, overcoming limitations of current insabilitybased methods for large k. We also compare, for the first time, model-based and model-free approaches to determining cluster-instability and find their performance to be comparable. We make our method available in the R-package cstab.

In Computational Statistics