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Abstract
We improve instability-based methods for the selection of the number of clusters k
in cluster analysis by developing a corrected clustering distance that corrects for the
unwanted influence of the distribution of cluster sizes on cluster instability. We show
that our corrected instability measure outperforms current instability-based measures
across the whole sequence of possible k, overcoming limitations of current insability-
based methods for large k. We also compare, for the first time, model-based and
model-free approaches to determining cluster-instability and find their performance
to be comparable. We make our method available in the R-package cstab.

Keywords Cluster analysis · k-means · Stability · Resampling

1 Introduction

Acentral problem in cluster analysis is selecting the number of clusters k. This problem
is typically approached by assuming the existence of a true number of clusters k∗
that can be estimated via an objective function that defines the quality of a clustering.
Different definitions have been proposed and it is generally accepted that the usefulness
of a definition depends on the clustering problem at hand (see e.g., Friedman et al.
2001; Hennig 2015).
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1880 J. M. B. Haslbeck, D. U. Wulff

Most definitions characterize the quality of a clustering in terms of a distancemetric
that depends on the locations and cluster assignments of the clustered objects.Methods
relying on such definitions select k by trading-off the magnitude of the distance metric
or some transformation of it against the magnitude of k. The most commonly used
distance metric is the within-cluster dissimilarity W (k) of within-cluster object pairs
averaged across all clusters. When selecting k based on this metric it is assumed that
W (k) exhibits a kink at the true cluster number k = k∗. This is because adding more
clusters beyond k∗ will decrease W (k) only by a relatively small amount, since new
clusters are created from clusters that already are relatively homogeneous. Allmethods
focusing on the distances between objects and clusters, in one way or another, aim
to identify this kink. Two examples are the Gap statistic (Tibshirani et al. 2001) and
the Jump statistic (Sugar and James 2003). Related metrics are the Silhouette statistic
(Rousseeuw 1987), which is an index of cluster separation rather than variance, and a
variant thereof, the Slope statistic (Fujita et al. 2014).

In contrast, the approach investigated in this paper defines a ‘good clustering’ in
terms of its instability in response to perturbations of the data. Accordingly, instability-
based methods select k to be the value that minimizes the instability of the clustering.
Instability-basedmethods are attractive because they are not based on a specific metric
for the distance between objects and have been shown to perform at least as well as
state-of-the-art distance-based methods (e.g., Ben-Hur et al. 2001; Tibshirani and
Walther 2005; Hennig 2007; Wang 2010; Fang and Wang 2012).

In this article, we show that the results of two the existing instability-based
approaches, the model-based approach (Fang and Wang 2012) and the model-free
approach (Ben-Hur et al. 2001), depend on the distribution of cluster sizes M . As a
result, both approaches produce biased estimates of k∗, especially when the list of
candidate k is not restricted to small numbers. To address this problem, we develop a
corrected cluster instability measure that corrects for the influence of M . We show that
our corrected instability measure outperforms current instability measures across the
whole sequence of possible k. We also compare, for the first time, model-based and
model-free approaches to determine cluster-instability and find that their performance
is comparable. We make our method available in the R-package cstab, which is
available on The Comprehensive R Archive Network (CRAN).

2 Clustering instability

LetX = {X1, . . . , Xn} ∈ R
n×p be n samples from an unknown distributionP defined

on R
p. We define a clustering ψ : R

p �→ {1, . . . , K } as a mapping from objects
Xi ∈ R

p to k ∈ {1, . . . , K } clusters where the clustering ψ is learned from data by
clustering algorithm �(X, k).

A clustering ψ is considered stable if it is robust against perturbations of the data.
Specifically, under a stable clustering, two objects X1, X2 that occupy the same cluster
in a clustering ψa based on the original data X tend to also occupy the same cluster in
a clustering ψb based on a perturbed data ˜X and vice versa for objects not occupying
the same cluster. This notion of pair-wise agreement and disagreement between two
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Fig. 1 Schematic illustration of the four possible clustering distance configurations for the clusterings
ψa , ψb and two objects X1, X2, for the simplest non-trivial examples with two clusters

clusterings is the basis for defining a clustering distance and, in turn, the measure of
clustering instability (e.g., Ben-David et al. 2006; Fang and Wang 2012)

Definition 1 (Object-pair Disagreement) The pairwise disagreement of any pair of
clusterings ψa(·) and ψb(·) for a fixed pair of objects X1 and X2 is defined as

a(ψa(X1), ψb(X2)) = |I{ψa(X1)=ψa(X2)} − I{ψb(X1)=ψb(X2)}|,

where I(E) is the indicator function for the event E .

Figure 1 displays the four possible configurations that can occur in the indicator
functions in Definition 1 for the example of two clusters and two objects X1, X2:
if ψa, ψb agree on whether any two objects occupy the same cluster or not (I and
II), then a(ψa(X1), ψb(X2)) = 0. Conversely, if ψa, ψb disagree (III and IV), then
a(ψa(X1), ψb(X2)) = 1.

Using the above definition, we define clustering distance as the expected disagree-
ment a(ψa(Xi ), ψb(X j )) over all possible pairs (i, j), given probability distribution
P .

Definition 2 (Clustering Distance) The distance between a pair of clusterings ψa and
ψb is defined as

d(ψa, ψb) = EXi ,X j∼P a(ψa(Xi ), ψb(X j )),

where the expectation is taken with respect to the probability distribution P .

Now, using the above definition, we define clustering instability as the expected
clustering distance for pairs of clusterings obtained for repeated perturbations of the
data.
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Definition 3 (Clustering instability) The clustering instability of clustering algorithm
�(X , k) is defined as

s(�, k) = E
˜Xa ,˜Xb∼Pn [d(ψa, ψb)] ,

where the clusterings ψa and ψb are obtained from two independent samples ˜Xa and
˜Xb with n observations drawn from P , and the expectation is taken with respect to P .

Since s(�, k) is the expectation of d(ψa, ψb) ∈ [0, 1] over pairs of independent
samples fromP , it also takes values in [0, 1]. Given the definition of clustering instabil-
ity, we estimate the true number of clusters k∗ by choosing the value of k ∈ {1, . . . , K }
that minimizes clustering instability:

k̂ = arg min
2≤k≤K

s(�,X, k). (1)

In the following two sections we describe two approaches to compute s(�, k) for a
given data set X and clustering algorithm �. The two approaches differ with respect
to which pairs of objects are used to determine the clustering distance.

3 Model-based clustering instability

The first approach computes clustering instability based on all objects contained in the
data set, which requires that objects not contained in perturbations of the data set must
also be assigned to a cluster. This can only be achieved using a clustering algorithm
�(·, k) that models the entire object spaceRp as a partition into k non-empty subsets.
An example clustering algorithm meeting this requirement is the k-means algorithm,
which partitions Rp into k Voronoi cells (Hartigan 1975).

To calculate clustering instability using the model-based approach, we must, fur-
ther, address that the definitions of clustering instability (Definition 3) and clustering
distance (Definition 2) imply that independent samples are drawn from P and that the
distance is calculated for all objects inP although P is unknown. Following Fang and
Wang (2012), we address this problem by using the non-parametric bootstrap. That
is, we repeatedly draw samples with replacement from X instead of P and approxi-
mate the expectation in Definition 3 by averaging over the finite number of bootstrap
sample pairs. We could also have used a cross-validation (CV) scheme (Tibshirani
and Walther 2005; Wang 2010); however, the non-parametric bootstrap (Fang and
Wang 2012) has been found for perform better than CV (Fang and Wang 2012). The
model-based algorithm then addresses the initial problem by determining the cluster
assignment for all objects in X with respect to the clusterings of two bootstrap sam-
ples, before computing the clustering distance based on all pairs Xi , X j ∈ X utilizing
the full partitioning of Rp.
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1. Take bootstrap samples ˜Xa,˜Xb from the empirical data set X.
2. Learn clusterings ψa, ψb from the bootstrapped data sets ˜Xa and ˜Xb, using the

clustering algorithm �(·, k).
3. Use the clusterings ψa, ψb to compute assignments for each object in the original

data set X.
4. Use the assigments to compute the clustering distance as in Definition 2, with

respect to all pairs in the original data set X.

Repeat 1-4 B times and return the average instability
ŝ(�,X, k) = 1

B

∑B
b∗=1 db∗(ψa, ψb), where db∗ is the clustering distance

computed in bootstrap sample b∗.

Algorithm 1: Estimate Clustering Instability with Model-based Approach

Themodel-based approach can be used with all clustering algorithms that fully par-
tition R

p, including spectral clustering (Ng et al. 2002) as described in Bengio et al.
(2003). However, the model-based approach is not compatible with certain popular
algorithms such as, for instance, hierarchical clustering (Friedman et al. 2001), which
do not learn a full partitioning of Rp as required by step 3 of Algorithm 1. This short-
coming can be addressed by using an additional classifier (e.g., k nearest neighbors)
to assign clusters to unseen objects. However, a simpler alternative, sidestepping this
issue, exists in the model-free approach described in the following section.

4 Model-free clustering instability

The model-free approach (Ben-Hur et al. 2001) sidesteps the requirement of a full
partitioning of Rp by computing the clustering distance in Definition 2 with respect
to all pairs (i, j) of unique objects contained in both ˜Xa and ˜Xb. As a result, no
assignments of new objects to clusters are necessary, and therefore any clustering
algorithm can be used.

1. Take bootstrap samples ˜Xa,˜Xb from the empirical data set X
2. Learn clusterings ψa(˜Xa), ψb(˜Xb) using the clustering algorithm �(·, k)
3. Take the intersection ˜Xa∩b = ˜Xa ∩ ˜Xb, after dropping identical objects within each

bootstrap sample
4. Use the assigments to compute the clustering distance as in Definition 2, with

respect to all pairs in the intersection ˜Xa∩b.

Repeat 1-4 B times and return the average instability
ŝ(�,X, k) = 1

B

∑B
b=1 db∗(ψa, ψb), where db∗ is the clustering distance

computed in bootstrap sample b∗.

Algorithm 2: Estimate Clustering Instability with Model-Free Approach

A potential cost of this flexibility is that Algorithm 2 compared to Algorithm 1
computes clustering instability only on approximately 40 % of the original data1,

1 For large n, we have P(a j ∈ B1 ∧ a j ∈ B2) = P(a j ∈ B1)P(a j ∈ B2) = (1 − 1
e )2.
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suggesting that a larger number of pairs of bootstrap samples B has to be sampled to
achieve the same reliability as the model-based approach.

5 A corrected clustering instability

Nomatter which of the two approaches one chooses, the desired behavior of clustering
instability s(�, k) is to return small values for ks close to a theoretical k∗, and the small-
est value for k = k∗. However, for the instability-based approaches described above,
this is not generally the case. We will illustrate that clustering instability s(�,X, k)
heavily depends on the distribution of cluster sizes M ∈ {m1, . . . ,mk} implied by a
clustering ψ for X and by extension on the candidate k. This dependency introduces
both noise and bias into the estimation of k.

The following examples illustrate the problem. Consider the clustering distance in
Definition 2. The expectation can only be nonzero if it is possible for at least one pair
Xi , X j to be in the same cluster in one clustering and in different clusters in the other.
This can only occur for 1 < k < n, as for k = 1 the two objects Xi , X j would be
forced into the same cluster and for k = n they are forced into their own clusters
(clusters are per definition nonempty). For the remaining range of 1 < k < n, the
distance can become larger than 0. However, for values close to n, clustering distance
will remain close to zero, because disagreement across clustering is only possible for
a few pairs. For example, for k = n − 1, the two clusterings can disagree only with
respect to a single pair. On the other hand, k = 2 allows for a much larger distance,
since the clustering algorithm can in principle disagree with respect to all pairs. Note
that the exact relationship of d(ψa, ψb) and k, of course, also depends on the clustering
algorithm and the data generating distribution P .

To make above mentioned dependencies explicit, we rewrite Definition 2 in the
following equivalent form:

d(ψa, ψb) = E

[

I{ψa(Xi )=ψa(X j )} × I{ψb(Xi ) 
=ψb(X j )}

+ I{ψa(Xi ) 
=ψa(X j )} × I{ψb(Xi )=ψb(X j )}
]

.
(2)

Using the identity E[XY ] = E[X ]E[Y ] + cov(X ,Y ), the definition of correla-
tion cor(X ,Y ) = cov(X ,Y )/(

√
var(X)

√
var(Y )) for random variables X ,Y , and the

shorthand Is = Iψs (Xi )=ψs (X j ) for s ∈ {a, b}, the equation in Definition 2 can be
rearranged in the following way:

d(ψa, ψb) = E(Ia) × E(1 − Ib)

+ E(1 − Ia) × E(Ib)

+ cor(Ia, 1 − Ib) × √

var(Ia) × √

var(1 − Ib)

+ cor(1 − Ia, Ib) × √

var(1 − Ia) × √

var(Ib).

(3)

This representation of d(ψa, ψb) shows that only the terms cor(Ia, 1 − Ib) and
cor(1 − Ia, Ib) actually capture how well clusterings agree across bootstrap samples.
All other terms, i.e., the expectations E(Is) and variances var(Is), only concern the
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individual clusterings by themselves independent of the respective other clusterings.
Crucially, however, these additional terms also depend on k via the distribution of
cluster sizes M , producing the unwanted dependencies outlined above.

In order to remove these influences from d(ψa, ψb) we next derive expressions
for E(Is) and var(Is), under the simplifying assumption that the probability of each
event ψs(Xi ) = ψs(X j ), with s ∈ {a, b}, is constant for all pairs (Xi , X j ) ∼ P .
The assumption renders ψs(Xi ) = ψs(X j ) a Bernoulli event, allowing us to estimate
E(Is) using

E(Is) =
∑

1≤i≤k

(mi
s
2

)

(n
2

) , (4)

where mi
s ∈ Ms = {m1

s , . . . ,m
k
s } is the sizes of cluster i in clustering ψs . That is, we

determine E(Is) by summing across clusters the number of possible object pairs in
each cluster and then normalize by the total number of pairs given n. Using the above
assumption, we can, furthermore, estimate var(Is) using

var(Is) = var(1 − Is) = E(Is)(1 − E(Is)). (5)

With these results and the shorthands c1 = E(Ia)E(1− Ib)+E(1− Ia)E(Ib), c2 =√
var(Ia) × √

var(1 − Ib) = √
var(1 − Ia) × √

var(Ib), and the fact that cor(Ia, 1 −
Ib) = cor(1 − Ia, Ib), we define our corrected clustering distance as

dc(ψa, ψb) = .5 × d(ψa, ψb) − c1
c2

= cor(Ia, 1 − Ib). (6)

Using the above result, we define our corrected clustering instability measure
sc(�, k) consistent with Definition 3 as the expected corrected clustering distance. To
the extent that our simplifying assumption is valid, the corrected clustering distance
would no longer depend on M and capture only the disagreement between clusterings.
Of course, in reality, we must expect the probability of two pairs sharing a cluster to
vary across pairs, implying that our correction is likely imperfect. Nonetheless, if c1
and c2 substantially influence clustering distance, then we can expect the use of our
corrected clustering instability to improve the performance of existing, uncorrected
instability-based methods.

To illustrate the impact of c1 and c2 on clustering distance, we simulated c1 and
c2 on the basis of cluster sizes M1, M2 ∼ Multinomial(�) with � ∼ Dirichlet(1)
being the unknown distribution of cluster sizes in P and assuming n = 100. Figure
2 shows the average c1 (left panel) and c2 (right panel) and their ranges (center 99%)
across k ∈ {2, 3, . . . , 50}. We see that both c1 and c2 vary dramatically within and
across k. Overall, both c1 and c2 are maximal for small values of k, with maximums
for k = 3 when drawn according to�, and quickly taper off approaching 0 as k grows
large. Being positively related to c1 and c2, the uncorrected clustering distance will
therefore always be small for large k, irrespective of the location of k∗.

The consequences for clustering instability are easily observed. Figure 3 shows
the clustering instability obtained for the clustering problem studied by Fang and
Wang (2012) using the corrected and uncorected clustering distance. As expected,
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Fig. 2 Simulated c1 and c2 across k ∈ {1, . . . , 75} for randomly generated M and n = 100 objects. The
shaded areas in the background show the center 99% of values due to variation in M for a given k. The
solid lines represent the average for M drawn randomly (solid) and m1, . . . ,mk = 100/k (dashed)
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Fig. 3 Left: mixture of three (each n=50) 2-dimensional Gaussians with zero covariance and σi = 1.
Right: instability path for the model-based (red) and model-free instability approach (black), both corrected
(dashed) and uncorrected (solid). The horizontal lines indicate the local minimum of the instability path at
k∗ = 3 for each method. The estimate k̂ will be incorrect (too large) if we consider ks with an instability
below the corresponding horizontal line (color figure online)

the uncorrected clustering instability (solid line) tapers off as k is increasing with the
consequence that for k > 25 (model-based) and k > 23 (model-free) the clustering
instability becomes smaller than the value obtained for k = k∗ = 3. The clustering
instability using the corrected clustering distance, however, does not show this unde-
sirable behavior. Instead, it shows a clearly defined global minimum at k = k∗ and no
tapering off for larger k. The clustering instability using the corrected clustering dis-
tance therefore permits amore accurate estimation of k∗ across the entire range of k. As
a result, it is no longer necessary to constrain the candidate set for k to small values to
avoid k̂ = max k (cf., Fang and Wang 2012; Ben-Hur et al. 2001). In the next section,
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Fig. 4 First column: three Gaussians with σ = .1 and n = 50 placed on a circle; second column: seven
Gaussians with σ = .04 and n = 50 placed on a circle; third column: three elongated clusters in three
dimensions (only the first two shown); fourth column: seven elongated clusters in three dimensions (only
the first two shown)

we use numerical experiments to demonstrate the performance of clustering instability
using the corrected clustering distance to estimate k∗ across several realistic settings.

6 Numerical experiments

We now turn to the numerical evaluation of the performance of uncorrected and cor-
rected instability-based methods across four scenarios. This will include a comparison
of the model-free and model-based instability-based approaches to the performance
of four popular distance-based methods for estimating k∗.

6.1 Data generation

Wegenerated data fromGaussianmixtures as illustrated in Fig. 4. For the first scenario
with k∗ = 3, we equally distributed the means of three Gaussians (σ = 0.15) on a
unit circle and sampled n = 50 from each Gaussian. For the second scenario with
k∗ = 7, we equally distributed the means of seven Gaussians (σ = 0.04) on a unit
circle and sampled n = 50 from each Gaussian. The total sample sizes of the first
and second problem are, thus, 150 and 350, respectively. The third and fourth scenario
used elongated clusters similar to those in Tibshirani andWalther (2005): we generated
n = 50 equally spaced points along the diagonal of a 3-dimensional cube with side
length [−5, 5], and added uncorrelated Gaussian noise (μ = 0 and σi = 0.1) to each
data point. We then replicated these data points to reflect the true number of clusters
k∗ = 3 and k∗ = 7, for the third and fourth scenario, respectively, and placed them
along a line separated by a distance of 15. As above, the total sample sizes of the
third and fourth scenario were 150 and 350, respectively. We provide code to fully
reproduce our simulation results in the Online Supplementary Material. Note that the
illustration of the third and fourth scenario in Fig. 4 omits the third dimension.

6.2 Comparison plan

The main goal of our numerical experiments is to compare our novel corrected clus-
tering instability method to the standard, uncorrected clustering instability methods.
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However, to also learn about the relative merits of instability-based methods, we com-
pare their performance to the performance of popular distance-based methods for
k-selection. Note that these methods imply different definitions of a ’good’ clustering
(see introduction). Thus, strictly speaking the different methods solve different prob-
lems. Nonetheless, in practice, all of these methods are applied for the same purpose.
In some way, the various methods can be understood as different heuristic solutions
to a given problem (here, the four scenarios described in Sect. 6.1).

We consider the following four distance-based methods: the Gap Statistic (Tibshi-
rani et al. 2001), the Jump statistic (Sugar and James 2003), the Slope statistic (Fujita
et al. 2014), and a Gaussian mixture model. The Gap statistic simulates uniform data
of the same dimensionality as the original data and then compares the gap between
the logarithm of the within-cluster dissimilarity W (k) for the simulated and original
data. It selects the value of k for which this gap is largest. The Jump statistic computes
the differences of the within-cluster distortion at k and k − 1 (after transformation
via a negative power) to select the value of k that produced the largest differences in
distortions. The Slope statistic is based on the Silhouette statistic Si(), and selects k
to maximize [Si(k) − Si(k − 1)]Si(k)v , where v is a tuning parameter. Finally, the
Gaussian mixture model selects k as the number of components in the mixture model
yielding the lowest Bayesian Information Criterion (BIC) (Schwarz 1978). We used
the BIC as a model selection criterion, since it has been shown to be a consistent
estimator for the number of components (clusters) in finite Gaussian mixture models
(Leroux 1992), and because it has been shown to outperform other information criteria
in simulations (Steele and Raftery 2010).

We evaluated the k-selection methods using the k-means clustering algorithm (Har-
tigan 1975). The k-means algorithm was restarted 10 times with random starting
centroids in order to avoid local minima. Dick et al. (2014) showed that 10 restarts for
k-means were sufficient for two clustering problems that match the problems consid-
ered here. For all methods, we considered the sequence k = {2, 3, . . . , 50}. For the
instability-based methods, we used 100 pairs of bootstrap samples (see Algorithm 1
and 2). To maximize comparability, we used the same set of random seeds across the
instability-based methods (within the same iteration).

6.3 Results

Table 1 shows the estimated k̂ over 100 iterations for each of the four scenarios and
eight methods. Estimated k̂ ≥ 20 are collapsed in the category ’20+’.We first focus on
the results of the instability-based methods. For the first scenario with k∗ = 3 circular
clusters, the uncorrected instability-based methods perform poorly, with about half of
the estimates being correct, and the other half being in the category ’20+’. This poor
performance was expected given the unfavorable behavior illustrated in Figs. 2 and
3. The corrected instability methods, however, mitigate this problem and accordingly
show high performance. The pattern of results in the scenario with k∗ = 7 is similar,
only more pronounced. With the clustering problem being more difficult, uncorrected
instability-based methods fail to identify k∗ in every iteration, whereas the corrected
instability-based methods still successfully identify k∗ in the vast majority of cases. In
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Table 1 Estimated number of clusters in four different scenarios for 100 iterations

3 circular clusters, 2 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32

Model-based (C) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model-free 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57

Model-free (C) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gap statistic 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Jump statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Slope statistic 0 96 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gaussian mixture 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 circular clusters, 2 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+
Model-based 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Model-based (C) 0 0 0 0 0 87 13 0 0 0 0 0 0 0 0 0 0 0 0

Model-free 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Model-free (C) 0 0 0 0 0 91 9 0 0 0 0 0 0 0 0 0 0 0 0

Gap statistic 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

Jump statistic 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 92

Slope statistic 0 0 0 0 0 31 17 18 18 9 5 1 0 0 1 0 0 0 0

Gaussian mixture 0 0 0 0 0 99 1 0 0 0 0 0 0 0 0 0 0 0 0

3 elongated clusters, 2 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+
Model-based 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model-based (C) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model-free 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model-free (C) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gap statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Jump statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Slope statistic 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gaussian mixture 0 99 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 elongated clusters, 2 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+
Model-based 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Model-based (C) 19 0 0 0 0 42 39 1 1 0 0 0 0 0 0 0 0 0 0

Model-free 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Model-free (C) 19 0 0 0 0 51 30 0 0 0 0 0 0 0 0 0 0 0 0

Gap statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Jump statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
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Table 1 continued

7 elongated clusters, 2 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+
Slope statistic 0 0 0 0 0 68 7 10 6 2 4 3 0 0 0 0 0 0 0

Gaussian mixture 0 0 0 1 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0

Model−free (C)
Model−based (C)

1 2500 5000

0.010

0.018

0.025

0.032

0.040

0.048

0.055

0.062

0.070

Bootstrap samples B

In
st

ab
ili

ty

1 2500 5000

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

Bootstrap samples B

D
iff

er
en

ce

Fig. 5 Left: The average instability for fixed k = 3 up to bootstrap sample b for both the model-based (red)
and model-free (black) instability approach. The data are those from Fig. 3. Right: The difference between
the two functions (color figure online)

the third scenario with k∗ = 3 elongated clusters, all instability-based methods show
maximum performance. The favorable performance of all instability-based methods
is due to the fact that the tail of the instability path for uncorrected methods did not
undercut the local minimum at k = 3 for k ≥ 50. In the fourth scenario with k∗ = 7
elongated clusters, the performance of the uncorrectedmethods drops to zero, whereas
corrected instability methods are still able to identify k∗ in a considerable number of
cases. Overall the results show that the corrected instability-methods perform better
than the uncorrected ones.

We now turn to the performance of distance-based methods. The clear winner
among this class of methods is the Gaussian mixture, which performs extremely well
in all scenarios. This is what one would expect, since data was generated from a
Gaussian mixture. Next, the Slope statistic performs reasonably well; however, the
performance is much lower for k∗ = 7 than for k∗ = 3. The Gap statistic shows
maximal performance for the circular clusterings, but drops to zero in for the elongated
clusters. Finally, the Jump statistic shows poor performance in all scenarios. The
reason for the bad performance of the Jump statistic is that its variance increases with
increasing k. See Appendix B for a detailed illustration of this problem.

Our comparison revealed that corrected instability-based methods compare favor-
ably to existing distance-based methods. With our proposed correction, instability-
based methods outperform every distance-based method, except for the Gaussian
mixture methods. However, without our proposed correction, it is almost always bet-
ter to use any of the distance-based methods. For additional comparisons between the
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methods, consult Appendix A where we study small variations of the first and second
scenario including additional noise dimensions.

Another noteworthy finding of our analysis is the near-equivalent performance of
the model-based and the model-free instability approaches (see Table 1). To analyze
whether the twomethods converge for large B, we ran bothmethods using the scenario
of Fig. 3 over a increasing number of B ∈ {1, 2, . . . , 5000} pairs of bootstrap samples.
Figure 5 shows that although both methods seem to stabilize in a small region around
0.038 they still show considerable variance even with 5000 bootstrap samples. It is
thus unclear whether the two methods converge; however, they may converge for
larger B. Furthermore, we evaluated the correlations between the instability paths of
both approaches for the simulation reported in Table 1. They are between 0.98 and 1,
suggesting that the two methods behave very similarly.

7 Conclusions

Wehaveproposed a correction for cluster-instabilitymethods for estimating k∗, the true
number of clusters in a dataset, and demonstrated that it enables accurate estimation
of k∗ across the entire range of k by controlling for the unwanted influences of the
distribution of cluster sizes M . We also have shown that instability-based methods,
especially when using the proposed correction, can outperform established distance-
based k-selection methods. Finally, we have compared model-based and model-free
variants of the instability-basedmethod and found them to be similar, but not identical.
Together, these results corroborate the usefulness of cluster instability as an approach
for estimating the number of clusters in a dataset.

Future research should extend our work in the following two ways. First, given
the divergence of the model-based and model-free approaches, future research should
study in closer detail the relative performance of the two across different situations.
Second, future research should investigate more appropriate corrections by relaxing
our simplifying assumption of equal probability for two objects occupying in the same
cluster. That is, while our numerical experiments demonstrate the usefulness of using
dc, there is potential for more complex, better corrections.
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Table 2 Estimated number of clusters in different scenarios

3 circular clusters, 10 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51

Model-based (C) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model-free 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96

Model-free (C) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gap statistic 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Jump statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Slope statistic 0 97 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gaussian mixture 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 circular clusters, 10 dimensions
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Model-based (C) 0 0 0 0 0 68 32 0 0 0 0 0 0 0 0 0 0 0 0

Model-free 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Model-free (C) 0 0 0 0 0 83 17 0 0 0 0 0 0 0 0 0 0 0 0

Gap statistic 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

Jump statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Slope statistic 0 9 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gaussian mixture 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix A: Additional numerical experiments

Table 2 shows the results of two additional scenarios that are adapted from scenarios
one and two in Sect. 6.3 by adding eight dimensions of uncorrelated Gaussian noise
with standard deviations σ = 0.15 in scenario 1 and σ = 0.04 in scenario 2.

The performance is qualitatively similar to the performance reported in the main
text. However, performance dropped for all methods as a result of the added noise,
which rendered the clustering problem more difficult.

Appendix B: Path of jump statistic

One reason for the bad performance of the Jump statistic is that the variance of the
Jump size increases as k increases. We illustrate this problematic behavior of the Jump
statistic in Fig. 6 using 100 iterations of scenario 1 (three circular clusters) and 2 (seven
circular clusters) from the main text.

The figure plots the Jump statistic for each of the 100 iterations across k ∈
{2, 3, . . . , 10}. We see that the variance of the Jump statistic clearly increases for
larger k. This implies that similarly to the uncorrected stability-based methods, the
Jump statistic can only identify k∗, when the range of possible k is restricted to a small
range around the true k∗.
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Fig. 6 The Jump statistics along the sequence of considered k for each of the 100 simulation iterations.
Left: for the scenario with three true clusters in two dimensions. Right: for the scenario with seven true
clusters in two dimensions
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