
COMMENTARY
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What are the cognitive mechanisms underlying subjective valuations formed on the basis of sequential
experiences of an option’s possible outcomes? Ashby and Rakow (2014) have proposed a sliding window
model (SWIM), according to which people’s valuations represent the average of a limited sample of
recent experiences (the size of which is estimated by the model) formed after sampling has been
terminated (i.e., an end-of-sequence process). Ashby and Rakow presented results from which they
concluded, on the basis of model-selection criteria, that the SWIM performs well compared with
alternative models (e.g., value-updating model, summary model). Further, they reported that the indi-
vidual window sizes estimated by the SWIM correlated with a measure of working-memory capacity. In
a reanalysis of the Ashby and Rakow data, we find no clear evidence in support of any of the models
tested, and a slight advantage for the summary model. Further, we demonstrate that individual differences
in the window-size estimated by the SWIM can reflect differences in noise. In computer simulations, we
examine the more general question of how well the models tested by Ashby and Rakow can actually be
discriminated. The results reveal that the models’ ability to fit data depends on a complex interplay of
noise and the sample size of outcomes on which a valuation response is based. This can critically
influence model performance and conclusions regarding the underlying cognitive mechanisms. We
discuss the implications of these findings and suggest ways of improving model comparisons in
valuations from experience.

Keywords: valuations from experience, active sampling, cognitive modeling, model complexity,
monetary gambles

When a valuation of an object is formed on the basis of sequen-
tial experiences, not all experiences with the object necessarily
contribute equally to the valuation. Instead, more recent experi-
ences tend to have a stronger impact than do less recent ones (e.g.,
Hogarth & Einhorn, 1992). For instance, imagine that five draws
from a lottery with an initially unknown payoff distribution have
yielded the following sequence of outcomes: € 2.00, € 2.00, € 0.50,
€ 2.00, € 0.50. When asked to judge the value of the lottery,
respondents often seem to give disproportionate weight to out-
comes sampled at the end of the sequence. How can experience-
based valuations, in particular such potential recency effects, best
be modeled? A common assumption is that more distant experi-
ences have a gradually decreasing influence, in line with the idea
that memory traces decay with time (Ebbinghaus, 1885/1913). A

prominent instantiation of this notion in decision research is the
value-updating model (VUM; Hertwig, Barron, Weber, & Erev,
2006), according to which a valuation v after experiencing n
outcomes (with xn being the most recent one) is determined as
follows.

vn ! !1 " "1

n##$vn"1 $ "1

n##

xn. (1)

The parameter ! either gives more weight to earlier samples
(! " 1, primacy) or to later samples (! # 1, recency), or weights
all samples equally (! $ 1).

Ashby and Rakow (2014) recently proposed an intriguing alter-
native way of modeling a stronger influence of more recent expe-
riences. Rather than assuming a gradually decreasing impact, they
postulated an all-or-nothing mechanism that considers all experi-
ences in a recent window and excludes more distant experiences.
Specifically, the sliding window model (SWIM) proposes that a
valuation vn is formed by averaging % out of n total experiences xi:

vn !
1

% %
i ! 1 $ n – %

n

xi (2)

If the size of the window, %, is smaller than the total number of
experiences n, the SWIM implements recency effects by assuming
that some (specifically, n – %) of the earliest experiences are
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excluded from consideration; within the window, all experiences
contribute equally to the valuation. This account of recency is
structurally consistent with models of working memory that posit
a fixed, limited storage capacity, and in which an item is currently
either activated in memory or not (e.g., Cowan, 2001).

Ashby and Rakow (2014) argued that the SWIM should be
interpreted as an end-of-sequence mechanism the evaluation of
which is formed only after the sampling process has been termi-
nated. This deviates from the assumption in the VUM (and other
models; e.g., Hogarth & Einhorn, 1992; March, 1996) of a step-
by-step mechanism, the valuation of which is formed and contin-
ually updated online during the sampling process.

In two empirical studies, Ashby and Rakow (2014) pitted the
SWIM against the VUM as well as the summary model (SUM;
Hills & Hertwig, 2010; Wulff, Hills, & Hertwig, 2012), which
calculates an average across all experiences (thus assuming no
recency). In both studies, participants were presented with a total
of 40 lotteries, each of which had two randomly generated out-
comes, one high and one low, ranging between £ 0.39 and £ 4.00.
The possible outcomes of each lottery and their probabilities were
initially unknown to the participants, but they could sample (i.e.,
take random draws) from the payoff distribution. Participants
could draw as many samples as they wanted up to 100. After
terminating sampling each round, they provided a valuation for the
lottery. The valuation was incentivized using the Becker–
DeGroot–Marschak procedure (Becker, DeGroot, & Marschak,
1964).1

From their analyses of participants’ valuation responses, Ashby
and Rakow (2014) concluded “that for many individuals not all
information is used and that the amount of information integrated
is, in part, related to individual differences in cognitive abilities
such as memory span” (p. 1160). This conclusion was mainly
based on the findings that (a) the SWIM showed a better average
fit on the Akaike information criterion (AIC; Akaike, 1973), (b)
the window-size estimated for individual participants using the
SWIM was consistently smaller than the average number of sam-
ples the participant had drawn, and (c) there was a higher corre-
lation between sample size and response time for people better fit
by the SWIM than for those better fit by the VUM or SUM, in line
with the assumption that the SWIM implements an end-of-
sequence process (which predicts that the larger the number of
experiences that can be retrieved, the longer the response should
take). Further, to validate that the SWIM’s window size reflects
the number of experiences processed, the authors analyzed the
relationship between each participant’s window size as estimated
by the SWIM and a measure of working memory capacity.2

The SWIM represents an attractive addition to the growing
literature on models of experienced-based judgment and decision
making (e.g., Hertwig & Erev, 2009), and the empirical findings
presented by Ashby and Rakow (2014) are intriguing. Moreover,
the proposal that sampled outcomes are processed in an all-or-
nothing fashion has elegant conceptual similarities with the as-
sumption of limited capacity in prominent conceptions of working
memory (Baddeley, 2012). In this article, however, we argue that
the current evidence may not warrant the conclusion that
experience-based valuations are based on an all-or-nothing, end-
of-sequence evaluation process, as embodied in the SWIM. In fact,
our analyses show that the common setup used by Ashby and
Rakow—and in investigations into decisions from experience in

general (e.g., Hertwig & Erev, 2009)—is problematic for distin-
guishing between candidate mechanisms and needs to be im-
proved.

The article is structured as follows. In the first part, we critically
reevaluate the model comparison conducted by Ashby and Rakow
(2014) and find that if the data do support one particular model, it
is the SUM (which assumes no recency effect) rather than the
SWIM. We then illustrate that recency as estimated by the SWIM
may be confounded with the amount of noise in the valuation
process. It is therefore unclear whether individual differences in
window-size estimated by the SWIM indeed specifically reflect
the amount of information considered. This result complicates the
interpretation of Ashby and Rakow that correlations between the
SWIM estimates of window size and working memory capacity
would support the specific processes assumed by the model. We
also examine the assumption of an end-of-sequence process on a
conceptual level, arguing that the requirement to conduct and
terminate search actively in itself necessitates some form of step-
by-step process, which is at odds with the assumption of a pure
end-of-sequence process (as embodied in the SWIM).

In the second part, we turn to the more general question of how
well the different models of valuations from experience tested by
Ashby and Rakow (2014)—the SUM, VUM, and SWIM—can
actually be recovered from data. Specifically, we examine the
models’ relative ability to fit data for different levels of sample
size and noise. The analysis reveals that the models’ performance
depends on a complex interplay of these factors, which in many
cases can impair the recovery of the mechanism that actually
generated the data. We end by discussing implications of these
results for the study of valuations from experience and proposing
ways to improve investigations of the cognitive mechanisms un-
derlying experience-based decision making.

Reanalysis of Ashby and Rakow (2014)

Model Comparison

A key basis for Ashby and Rakow’s (2014) conclusion regard-
ing the viability of the SWIM was its performance in a model
comparison that pitted it against the VUM and the SUM. The
authors used two popular measures to evaluate the three models:
the Bayesian information criterion (BIC; Schwarz, 1978) and the
AIC. Both indices penalize for model complexity based on the
number of free parameters.3 Two aspects of model performance
were considered: the number of participants best accounted for by
each model (according to BIC and AIC), and each model’s median

1 Specifically, participants were informed that their valuation of the
lottery would be compared with a randomly drawn value between £0.00
and £4.00. If the value drawn was greater than or equal to their valuation,
they would receive that value; otherwise the gamble would be played out
and they would receive the resulting outcome.

2 Note that evidence for a positive relationship was claimed in the initial
report, but that in a later correction (“Correction to Ashby & Rakow,”
2014), the authors clarified that the correlation was in fact negative.

3 The BIC approximates the marginal likelihood of the data, given a
specific model, and the AIC approximates the Kullback–Leibler diver-
gence between the true and the evaluated model. Which of the two
measures is to be preferred is debated (for overviews, see Burnham &
Anderson, 2002; Lewandowsky & Farrell, 2010; Vrieze, 2012).
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and mean (across participants) BIC and AIC values. According to
BIC, the VUM and the SUM performed best in Studies 1 and 2,
respectively, in terms of the number of participants they best
accounted for. According to AIC, the SWIM accounted for the
largest number of participants (in Study 2; see also “Correction to
Ashby and Rakow,” 2014). In terms of the average BIC and AIC
values, the SWIM emerged as the best model.

For several reasons, however, the model-testing approach used
by Ashby and Rakow (2014) has limited power to support con-
clusions about the viability of the mechanism assumed in the
SWIM: First, the formal specifications of the tested models dif-
fered in aspects beyond the implementation of recency, making it
difficult to unequivocally identify the source of differences in
model performance. Specifically, a linear value function was as-
sumed for outcomes in the SWIM, but a nonlinear value function
for outcomes in the VUM (i.e., x& with & $ .88). Moreover, the
VUM was allowed to accommodate both recency and primacy
effects, whereas the SWIM could accommodate only recency
effects. Second, the models were not fit with equal precision. For
the VUM and the SWIM (which have two free parameters), Ashby
and Rakow used a two-stage fitting procedure. In a first step, they
estimated a noise parameter (implemented as the standard devia-
tion of a normal distribution of errors; see Appendix A) with the
SUM as the underlying model; they then estimated the recency
parameter and determined the overall maximum likelihoods of the
models based on the estimate obtained in the first step. This
procedure ignores the interplay between parameters (e.g., Scheibe-
henne & Pachur, 2015) and may lead to nonoptimal estimates, thus
giving the SUM (which has only one parameter) an edge. Third,
although the possible outcomes of the lotteries used by Ashby and
Rakow as well as participants’ valuations were confined to the
interval between 0 and 4, the models were allowed to produce
valuations going beyond this range, as an untruncated (rather than
a truncated) error distribution was used in the models. As a
consequence, parameter values giving predictions close to the
boundaries (i.e., close to 0 or 4) are given a low likelihood (as
greater portions of the probability mass are cut off by the bound-
aries); this might distort the parameter estimates and model com-
parisons.

We reanalyzed the data of Ashby and Rakow (2014) to see how
the different models fared when a more appropriate methodolog-
ical approach is used and, in addition, the models are equated with
respect to all aspects except for how recency is implemented.
Specifically, (a) we used a linear value function for all models, (b)
we fitted the VUM such that, for greater comparability with the
SWIM, it could accommodate only recency by constraining 0 &
! ' 1; we refer to this version of the model as VUMr, (c) for the
VUMr and the SWIM, we estimated both model parameters si-
multaneously, and (d) we used a truncated normal distribution to
model noise (see Appendix A). Further, the parameter estimation
was based on a combination of grid search and subsequent opti-
mization using quasi-Newton minimization, and we used the AICc

(AIC corrected) rather than the AIC for model comparison (Burn-
ham & Anderson, 2002).4

Figures 1 a–c plot the performance of one model (in terms of
AICc) against the other (aggregated across both studies in Ashby &
Rakow, 2014), separately for all three pairwise comparisons of the
SUM, the VUMr, and the SWIM (the results for BIC values are
qualitatively the same). Each point represents a participant. As can

be seen, model fits for three participants were far better than those
for most other participants (specifically, the fits for the VUMr and
the SWIM). As these three participants might have displayed
response patterns diverging from those of the other participants,
we excluded them for all following analyses (unless indicated
otherwise).5 Overall, the figure shows that the three models fitted
the data similarly well. Accordingly, the median and mean BIC
and AIC values reported in Table 1 barely differ across the SUM,
VUMr, and SWIM. Nevertheless, as Table 1 shows, the percentage
of participants best fit by the SUM was considerably higher than
that best fit by the VUMr or the SWIM, in terms of both BIC and
AICc. Figure 1 d–f plot the data against the predictions of the
models separately for the SUM, the VUMr, and the SWIM. It can
be seen that although the models capture general trends in the data
(indicated by the fact that many data points cluster around the
diagonal), for all three models there is also considerable misfit.
Table 1 shows that according to the median (across participants)
value of the noise parameter under each model (which corresponds
to the root mean squared deviation of the model prediction from
the data), the expected deviation of the model prediction from the
data equaled about a sixth of the entire range of possible values.
We will return to this issue of absolute model fit and the rather
high estimates of noise in Ashby and Rakow’s (2014) data.

In sum, a reanalysis of Ashby and Rakow (2014) using a more
appropriate model-comparison approach yielded little evidence
that one model consistently outperforms another. On the individual
level the majority of participants was best captured by the SUM.
Inconsistent with the conclusions drawn by Ashby and Rakow,
therefore, if the data do support one particular model, it is the
SUM, which considers all experiences in the sample and assumes
no recency, rather than the SWIM. The relative superiority of the
SUM must, however, be reevaluated in light of the analyses
reported below.

Interpreting Noise as Forgetting?

Ashby and Rakow’s (2014) argument that valuations from ex-
perience (sometimes) follow an all-or-nothing, end-of-sequence
process that considers only a limited number of the outcomes
experienced was also based on considerations beyond the results of
the model comparison. First, the window sizes estimated by the
SWIM were, on average, smaller than the number of samples
drawn. Second, Ashby and Rakow proposed that the window sizes
estimated for respondents classified as following the SWIM should
be related to their working-memory capacity. Similarly, respon-
dents following the SWIM should show a stronger positive rela-

4 It has been shown that the AIC penalizes insufficiently for model
flexibility with small sample sizes. For this reason, Burnham and Anderson
(2002) have recommended the use of the AICc, which corrects for this
bias (for large samples, AICc approaches AIC) and is defined as

AICc ! " 2ln&L' $ 2k $
2k&k$1'
n"k"1

, with L being the likelihood, k the

number of parameters, and n the number of data points used to calculate the
likelihood.

5 Further analyses indicated that these three participants gave the last
observed outcome as their final valuation in at least 95% of the lotteries
(although they, on average, drew more than one outcome before making a
valuation). Thus, these participants are likely to have applied a qualita-
tively different strategy than assumed by the SUM, VUM, or SWIM, which
provides grounds for their exclusion.
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tionship between window size and response time than respondents
following another mechanism (e.g., the SUM). Together, these
results would support the interpretation that SWIM respondents
process as many samples as their working memory size permits at
the end of the sequence. But note that a key assumption inherent

in these considerations is that the window-size estimate of the
SWIM veridically reflects the number of experiences on which the
valuation is based.

To demonstrate the limitations of this assumption, let us
consider a special case of the SWIM, where the window size of
considered experiences matches the total number of samples
drawn (i.e., % $ n). Under these circumstances, the SWIM
necessarily underestimates the window size (on average), be-
cause the estimates (which in the presence of noise will always
err to some extent) can err only in the direction of smaller
window sizes, not in the direction of larger window sizes. This
underestimation due to noise severely complicates tests of
Ashby and Rakow’s (2014) hypotheses. Specifically, to dem-
onstrate that people relied on only a limited sample of recent
experiences, it is necessary to show that window-size estimates
fall outside the range that could result from noise alone. This
was not the case for Ashby and Rakow’s setup, however. In a
simulation reported in Appendix B, in which the window size
was set to be equal to the sample size under realistic levels of
noise (matched to those observed by Ashby and Rakow), the
resulting window-size estimates suggested use of 87% of the

Table 1
Model Fits Aggregated Over Studies 1 and 2 of Ashby and
Rakow (2014)

Model

BIC AICc Noise

% best Mdn M % best Mdn M Mdn

SUM 75 83.1 76.5 62 82.2 75.9 .79
VUMr 7 85.3 78.3 10 82.7 76.5 .76
SWIM 18 83 77.3 27 81.2 75.6 .76

Note. BIC $ Bayesian information criterion; AIC $ Akaike information
criterion; SUM $ summary model; VUMr $ value-updating model–
recency; SWIM $ sliding window model. Shown are the number of
participants best fit by each model (separately for BIC and AICc), the mean
and median criterion value for each model, and the noise (') estimated
from the models (for the truncated range between 0 and 4).

Figure 1. Top row: Scatter plots show pairwise model comparisons of individual participants’ AICc values,
a–c. The white square in the upper left shows the majority of participants on a more fine-grained scale. Bottom
row: Scatter plots show the data as a function of the models’ predictions, d–f. AICc $ Akaike information criteria
(corrected); SWIM $ sliding window mode; SUM $ summary model; VUM $ value-updating model. See the
online article for the color version of this figure.
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sampled outcomes (although all outcomes were in fact used).
The estimated window sizes for the empirical data of Ashby and
Rakow suggest an only minimally smaller window size, namely
86% of the samples. In sum, the finding that the estimated
window size is smaller than the sample size does not warrant
the conclusion that only part of the information was used (as
assumed by the SWIM). Reduced window sizes (relative to the
sample size) may simply result from noise.

Conceptual Issues With End-of-Sequence Processing in
Self-Terminated Search

It is also instructive to consider the assumption of an end-of-
sequence evaluation process from a conceptual perspective. In the
sampling paradigm used by Ashby and Rakow (2014), participants
sequentially drew samples from an initially unknown payoff dis-
tribution, and it was up to them to decide when to stop sampling.
Should one expect respondents to construct a valuation only after
sampling has been terminated—as predicted by a strict interpreta-
tion of an end-of-sequence process? Note that this would imply
that the decision of how many samples to draw is unrelated to
(and unaffected by) the outcomes sampled. Based on the evi-
dence presented by Ashby and Rakow, however, this does not
seem very plausible. In particular, sample size was found to be
(positively) correlated with the variance of the lotteries (for
similar findings in the sampling paradigm, see Lejarraga,
Hertwig, & Gonzalez, 2012; Pachur & Scheibehenne, 2012).
Clearly, for sampling effort to be sensitive to the characteristics
of individual lotteries (e.g., their variances), some form of
online processing has to occur.

Another reason that speaks against end-of-sequence processing
is Ashby and Rakow’s (2014) finding that, overall, the data in the
sampling paradigm display a recency effect (i.e., that more weight
is given to more recent experiences; see also Pachur & Scheibe-
henne, 2012; Wulff, Hills, & Hertwig, 2014). Reviewing studies
with paradigms that encouraged end-of-sequence processing (i.e.,
people were presented with a sequence of evidence and asked for
an evaluation at the end of the sequence), Hogarth and Einhorn
(1992) reported that 34 of 54 studies (63%) showed a primacy
effect, not a recency effect. Recency effects, by contrast, were
found predominantly in studies explicitly enforcing step-by-step
processing (in 20 of 22 studies; 91%). If the participants in Ashby
and Rakow’s studies had indeed relied on an end-of-sequence
process, one would—on the basis of these findings—therefore
have expected a primacy effect to occur. However, Ashby and
Rakow’s estimates of the VUM’s ! parameter (which allows
serial-position effects to be measured) yielded evidence for re-
cency, not for primacy.

Given that, in the sampling paradigm people were not explicitly
instructed to conduct step-by-step processing, one might ask what
led them to rely on such a process. One possibility is that step-
by-step processing is triggered by the requirement in the sampling
paradigm for the respondent to actively decide when to stop
sampling (note that in typical end-of-sequence studies, participants
are presented with a sequence of outcomes of fixed length—that is,
they do not have to decide when to terminate search; Hogarth &
Einhorn, 1992).

Interim Summary

First, a more appropriate approach to the model evaluation
conducted by Ashby and Rakow (2014) provided no clear evi-
dence in support of any of the models tested. Second, under noise,
the window size estimated by the SWIM substantially undershot
the actual number of samples drawn, casting doubt on the conclu-
sion that reduced window sizes necessarily reflect forgetting or
constraints of working-memory capacity. Third, the notion of a
strict end-of-sequence process advocated by Ashby and Rakow is
inconsistent with the finding of variance-sensitive sampling in
both the authors’ data and in other investigations (e.g., Pachur &
Scheibehenne, 2012), and with a large body of research on belief
updating (Hogarth & Einhorn, 1992).

Modeling Valuations From Experience

How Well Can the Models Be Recovered?

To shed light on the cognitive processes underlying valuations
from experience, Ashby and Rakow (2014) fit three models to their
data: the SUM, the VUM, and the SWIM. One important condition
for this approach to be useful is that the models can actually be
recovered (if they match the data-generating mechanism). In the
following, we examine the degree to which the SUM, VUM, and
SWIM can actually be recovered based on the methodological
setup used in Ashby and Rakow (2014). Accurate model recovery
and discrimination between models are possible only if the true
process is not clouded by an excessive amount of noise. Further,
the models often have to make different predictions for the data at
hand. The latter may actually be quite a challenge in valuations
from experience. For instance, people’s active search in the sam-
pling paradigm can lead to nondiagnostic data when search is
terminated before more than two different outcomes have been
observed. If search is stopped after only one outcome has been
sampled, then, no matter how models are compared, it is impos-
sible to distinguish them. In Ashby and Rakow (2014), who used
two-outcome lotteries, only one type of outcome was observed in
34% of all trials (across all participants; note that these trials were
included in Ashby and Rakow’s and our analyses). But even if a
larger number of different outcomes are observed, the sequence of
samples can still make it impossible to discriminate between
models—for instance, when outcomes are relatively evenly dis-
tributed across the sequence of sampled outcomes.

Moreover, model recovery depends on the relative flexibility of the
models under consideration. Importantly, in valuations from experi-
ence, flexibility can be a function of the sample size on which the
valuations are based; note that in the sampling paradigm the number
of samples drawn is determined by the respondent. For instance, in the
simple case of just two observed values (e.g., 1, 3), the VUMr can
perfectly fit any valuation between 2 and 3 by shifting the ! parameter
between 0 and 1. The SWIM, in contrast, can only predict exactly two
different valuations, namely 2 (% $ 2) and 3 (% $ 1). For very small
sample sizes, the VUMr can thus be expected to perform much better
in fitting empirical data than the SWIM. For large sample sizes,
however, the reverse may be true. The VUMr always considers all
samples, which may place a large restriction on the range of valua-
tions it can fit. Because it can ignore entire subsets of the data, the
SWIM may then prove to be more flexible. Note that, in contrast to
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nondiagnostic data, differences in flexibility may lead to the system-
atic recovery of a wrong model.

To examine the extent to which the SUM, VUMr, and SWIM
can nonetheless be correctly recovered, we conducted a model-
recovery analysis based on the setup of Ashby and Rakow (2014).
Specifically, we simulated 1,000 agents for every combination of
20 levels of sample size and 20 levels of noise (2 & sample
size ' 40, .2 & ' ' 1.1, both covering 95% of the values observed
by Ashby and Rakow), separately for each of the models as the
generating process. Each simulated agent completed the valuation
task consisting of 40 lotteries. Given the empirical finding that
window and sample sizes are strongly correlated (Ashby & Ra-
kow, 2014), for the SWIM, the window size producing the valu-
ation was determined as a fixed fraction of the agent’s sample size
(namely %/n). For the VUM and the SWIM, we assumed levels of
recency that matched the median parameter estimates obtained
from the Ashby and Rakow data (VUMr: ! $ .77; SWIM: %/n $
.73). We then fitted the SUM, VUMr, and SWIM to each simu-
lated agent’s data, and determined their relative performances in
terms of model weights based on AICc and BIC (e.g., Wagenmak-
ers & Farrell, 2004).6

Figure 2 shows median model weights for the three models when
the SUM (upper panel), the VUMr (middle panel), or the SWIM
(lower panel) was the generating mechanism, separately for the dif-
ferent levels of noise (represented on the x axis). The line types and
transparent shapes illustrate the effect of the sample size on which a
valuation is based. The dashed and solid lines represent mean sample
sizes of 2 and 40, respectively. The transparent shapes illustrate the
range (minimum to maximum) of median model weights for mean
sample sizes between 4 and 38. The white background highlights the
range that covers 90% of the reported noise levels for the participants
in the two studies by Ashby and Rakow (2014).

As can be seen from Figure 2, there are many misclassifications—
that is, situations in which a model obtained the highest model weight
even though it had not generated the data. Generally, and not surpris-
ingly, model recovery for all three data sets becomes less accurate at
higher levels of noise. However, there is a systematic trend in the
misclassifications such that it is particularly the SUM that emerges as
the best-fitting mechanism when noise is high. This is because the
SUM has fewer parameters than the VUMr or the SWIM. In light of
this result, the (slight) advantage of the SUM in our reanalyses of
Ashby and Rakow’s (2014) empirical data reported above should be
treated with caution.

Moreover, model recovery seems to depend on sampling behav-
ior. For the vast majority of conditions in our simulation, the
SWIM appears to be more flexible than the VUMr, particularly
when the sample size of observations is large. This is evidenced by
the fact that valuations generated by the VUMr are more likely to
be incorrectly attributed to the SWIM than vice versa.7

Finally, as indicated by the relative position of the dashed and solid
lines (and the width of the transparent shapes) in Figure 2, for all
models, recovery proves to be considerably better for small than for
large sample sizes. This suggests that inaccurate model recovery is not
primarily due to having nondiagnostic data (which are more likely to
occur for small samples). One explanation for the perhaps counterin-
tuitive finding that model recovery is worse with larger sample sizes
is that all models converge, with larger sample size, toward predicting
the expected value of the lottery (because all three models under

consideration differ only in terms of the number or relative weighting
of observations considered).

Overall, the model-recovery analysis shows that—unless the error
level is very low—correct model recovery and hence discrimination
between the SUM, VUMr, and SWIM is difficult, and that the relative
performance of each model depends to a considerable degree on the
amount of noise and the sample size. These results suggest that
the relative performance of a model in an empirical study (in which
the respondent plays an active role in determining the amount of
sampling) also depends on factors other than the underlying mecha-
nism. This can severely complicate the interpretation of model-
comparison analyses as conducted by Ashby and Rakow (2014).

Implications and Suggestions

To the extent that high levels of noise, as estimated by the models
(see Table 1), reflect haphazard responses on the part of participants,
one approach to improve model discriminability could be to encour-
age more systematic behavior. For instance, it is important to ensure
that participants fully understand the Becker-DeGroot-Marschak pro-
cedure (Becker et al., 1964), which is commonly used to establish
incentive compatibility in valuation studies (e.g., by Ashby & Rakow,
2014). Several authors have argued that respondents do not always
fully comprehend the procedure, which may lead to noisy behavior
(James, 2007; Plott & Zeiler, 2005; Safra, Segal, & Spivak, 1990).
Another avenue would be to improve ways in which noise is modeled.
For instance, future studies might consider alternative noise distribu-
tions (e.g., a t or ( distribution) that are more robust against outliers,
or formalizations of noise where the response error is sensitive to the
characteristics of a lottery (e.g., its variance), rather than assuming a
constant error (e.g., Carbone & Hey, 2000).

However, a high level of noise may also indicate that the models fail
to capture substantial aspects of the data. Future work might thus also
consider alternative models of valuations from experience. One approach
could be to consider elements from prospect theory (e.g., Tversky &
Kahneman, 1992; for an example in the context of experience-based
decisions, see Ahn, Busemeyer, Wagenmakers, & Stout, 2008). Another
could be to consider alternative implementations of recency, for instance,
by modeling valuations of experience based on principles of ACT-R
(Anderson & Lebiere, 1998; for applications to decisions from experi-
ence, see, e.g., Gonzalez & Dutt, 2011).

Active sampling hampers the recovery of the underlying processes in
valuations from experience by affecting the diagnosticity of the data. If a
person samples only a few times, the chances are high that only one of the
lotteries’ outcomes is observed, which renders the models’ predictions
identical and their discrimination impossible. Problems also arise, how-
ever, if a person samples many times, because the SUM, VUMr, and
SWIM converge in their predictions when sample size is large. To
address these issues, we see three avenues for improving experimental
designs testing models of valuations from experience. First, researchers

6

Model weights are defined as wM !
e

"
1
2

(critM

%i e"
1
2

(criti

, where )crit is the

difference between model M and the best-performing model (in the set of
competing models) on the respective information criterion (i.e., AICc or
BIC; see Lewandowsky & Farrell, 2010).

7 The only exceptions occurred with a sample size of 2, due to the fact
that the VUMr (with ! $ 1 or ! $ 0) can perfectly mimic the two possible
predictions of the SWIM for a sample size of 2.
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could use a larger number of lotteries, as this will increase the chance of
observing diagnostic sequences. Second, instead of using the common
two-outcome lotteries, researchers could use multi-outcome lotteries, or
even lotteries with continuous outcomes (Wulff et al., 2014). Third, by
providing an incentive to sample more, researchers could decrease the
chance that only one type of outcome is observed (see Hau, Pleskac,
Kiefer, & Hertwig, 2008). Note, however, that excessive sampling will
also decrease model discriminability; these efforts therefore need to be

well balanced. To evaluate and improve the diagnosticity of different
design variants several formal approaches have been developed (e.g.,
landscaping, Navarro, Pitt, & Myung, 2004; optimal design, Myung &
Pitt, 2009).

Our results have shown that differences in sample size due to active
sampling also impact the relative flexibility of the models. Constant
punishment terms, as implemented in the AIC and BIC, are incapable
of accounting for this. Less constrained model selection criteria, such

Figure 2. Model recovery as a function of noise (SD) and sample size of the observations on which a valuation
is based. Panels in the upper, middle, and lower rows show the fits for data generated by the SUM, VUMr, and
SWIM, respectively. Panels on the left show fits expressed as median-model weights based on the BIC; panels
on the right show the fits based on the AICc. The solid lines indicate the performance for a sample size of 2, the
dashed lines for a sample size of 40. The transparent shapes show the range of performance for mean sample
sizes between 4 and 38. AIC $ Akaike information criteria; BIC $ Bayesian information criteria; SWIM $
sliding window mode; SUM $ summary model; VUM $ value-updating model. See the online article for the
color version of this figure.
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as marginal likelihood or normalized maximum likelihood (e.g.,
Myung, Navarro, & Pitt, 2006), or evaluations based on out-of-sample
prediction (Erev et al., 2010) might therefore be considered. Note that
any assessment of the appropriateness of a given model should also
include consideration of absolute model fit (e.g., Heathcote, Brown, &
Wagenmakers, 2015).

Conclusion

Ashby and Rakow’s (2014) SWIM presented an interesting
alternative to existing approaches to model recency in valua-
tions from experience. We welcome their proposal, as it em-
phasizes the overdue need to develop and rigorously compare
models of experience-based judgment and decision making.
Our analyses suggest, however, that evidence for the SWIM (or
any of the other models) must currently be considered limited
and that the validity of the model’s key parameter (i.e., its
window-size estimate) may be compromised. We identified a
number of general challenges in current approaches to testing
models of valuations from experience and highlighted several
methodological and conceptual issues that warrant consider-
ation. We hope that future research will take up these chal-
lenges and suggestions, as valuations based on active informa-
tion search are ubiquitous in real-world decision making.

References

Ahn, W. Y., Busemeyer, J. R., Wagenmakers, E. J., & Stout, J. C. (2008).
Comparison of decision learning models using the generalization crite-
rion method. Cognitive Science, 32, 1376 –1402. http://dx.doi.org/
10.1080/03640210802352992

Akaike, H. (1973). Information theory as an extension of the maximum
likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second Inter-
national Symposium on Information Theory (pp. 267–281). Budapest,
Hungary: Akademiai Kiado.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought.
Mahwah, NJ: Erlbaum.

Ashby, N. J., & Rakow, T. (2014). Forgetting the past: Individual differ-
ences in recency in subjective valuations from experience. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 40, 1153–
1162. http://dx.doi.org/10.1037/a0036352

Baddeley, A. (2012). Working memory: Theories, models, and controver-
sies. Annual Review of Psychology, 63, 1–29. http://dx.doi.org/10.1146/
annurev-psych-120710-100422

Becker, G. M., DeGroot, M. H., & Marschak, J. (1964). Measuring utility
by a single-response sequential method. Behavioral Science, 9, 226–
232. http://dx.doi.org/10.1002/bs.3830090304

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-
model inference: A practical information-theoretic approach. New
York, NY: Springer.

Carbone, E., & Hey, J. (2000). Which error story is best? Journal of Risk
and Uncertainty, 20, 161–176. http://dx.doi.org/10.1023/A:
1007829024107

Correction to Ashby and Rakow. (2014). Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 40, 1509. http://dx.doi.org/
10.1037/xlm0000087

Cowan, N. (2001). The magical Number 4 in short-term memory: A
reconsideration of mental storage capacity. Behavioral and Brain Sci-
ences, 24, 87–114. http://dx.doi.org/10.1017/S0140525X01003922

Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology.
New York, NY: Teachers College Press. Original work published 1885.

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., . . .
Lebiere, C. (2010). A choice prediction competition: Choices from

experience and from description. Journal of Behavioral Decision Mak-
ing, 23, 15–47. http://dx.doi.org/10.1002/bdm.683

Fox, P. (1997). The Port Mathematical Subroutine Library, Version 3.
Murray Hill, NJ: AT&T Bell Laboratories.

Gonzalez, C., & Dutt, V. (2011). Instance-based learning: Integrating
sampling and repeated decisions from experience. Psychological Re-
view, 118, 523–551. http://dx.doi.org/10.1037/a0024558

Hau, R., Pleskac, T. J., Kiefer, J., & Hertwig, R. (2008). The description–
experience gap in risky choice: The role of sample size and experienced
probabilities. Journal of Behavioral Decision Making, 21, 493–518.
http://dx.doi.org/10.1002/bdm.598

Heathcote, A., Brown, S. D., & Wagenmakers, E.-J. (2015). An introduc-
tion to good practices in cognitive modeling. In B. U. Forstmann & E.-J.
Wagenmakers (Eds.), An introduction to model-based cognitive neuro-
science (pp. 25– 48). New York, NY: Springer. http://dx.doi.org/
10.1007/978-1-4939-2236-9_2

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2006). The role of
information sampling in risky choice. In K. Fiedler & P. Juslin (Eds.),
Information sampling and adaptive cognition (pp. 75–91). New York,
NY: Cambridge University Press.

Hertwig, R., & Erev, I. (2009). The description-experience gap in risky
choice. Trends in Cognitive Sciences, 13, 517–523. http://dx.doi.org/
10.1016/j.tics.2009.09.004

Hills, T. T., & Hertwig, R. (2010). Information search in decisions from
experience. Do our patterns of sampling foreshadow our decisions?
Psychological Science, 21, 1787–1792. http://dx.doi.org/10.1177/
0956797610387443

Hogarth, R. M., & Einhorn, H. J. (1992). Order effects in belief updating:
The belief-adjustment model. Cognitive Psychology, 24, 1–55. http://dx
.doi.org/10.1016/0010-0285(92)90002-J

James, D. (2007). Stability of risk preference parameter estimates within
the Becker-DeGroot-Marschak procedure. Experimental Economics, 10,
123–141. http://dx.doi.org/10.1007/s10683-006-9136-y

Lejarraga, T., Hertwig, R., & Gonzalez, C. (2012). How choice ecology
influences search in decisions from experience. Cognition, 124, 334–
342. http://dx.doi.org/10.1016/j.cognition.2012.06.002

Lewandowsky, S., & Farrell, S. (2010). Computational modeling in cog-
nition: Principles and practice. London, UK: Sage.

March, J. G. (1996). Learning to be risk averse. Psychological Review, 103,
309–319. http://dx.doi.org/10.1037/0033-295X.103.2.309

Myung, J. I., Navarro, D. J., & Pitt, M. A. (2006). Model selection by
normalized maximum likelihood. Journal of Mathematical Psychology,
50, 167–179. http://dx.doi.org/10.1016/j.jmp.2005.06.008

Myung, J. I., & Pitt, M. A. (2009). Optimal experimental design for model
discrimination. Psychological Review, 116, 499–518. http://dx.doi.org/
10.1037/a0016104

Navarro, D. J., Pitt, M. A., & Myung, I. J. (2004). Assessing the
distinguishability of models and the informativeness of data. Cogni-
tive Psychology, 49, 47– 84. http://dx.doi.org/10.1016/j.cogpsych
.2003.11.001

Pachur, T., & Scheibehenne, B. (2012). Constructing preference from
experience: The endowment effect reflected in external information
search. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 38, 1108 –1116. http://dx.doi.org/10.1037/a0027637

Plott, C. R., & Zeiler, K. (2005). The willingness to pay–willingness to
accept gap, the “endowment effect,” subject misconceptions, and
experimental procedures for eliciting valuations. The American Eco-
nomic Review, 95, 530 –545. http://dx.doi.org/10.1257/00028280
54201387

R Core Team. (2013). R [Computer software]: A language and envi-
ronment for statistical computing. Vienna, Austria: R Foundation for
Statistical Computing. Retrieved from http://www.R-project.org/

Safra, Z., Segal, U., & Spivak, A. (1990). The Becker-DeGroot-
Marschak mechanism and nonexpected utility: A testable approach.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

165MODELING VALUATIONS FROM EXPERIENCE

http://dx.doi.org/10.1080/03640210802352992
http://dx.doi.org/10.1080/03640210802352992
http://dx.doi.org/10.1037/a0036352
http://dx.doi.org/10.1146/annurev-psych-120710-100422
http://dx.doi.org/10.1146/annurev-psych-120710-100422
http://dx.doi.org/10.1002/bs.3830090304
http://dx.doi.org/10.1023/A:1007829024107
http://dx.doi.org/10.1023/A:1007829024107
http://dx.doi.org/10.1037/xlm0000087
http://dx.doi.org/10.1037/xlm0000087
http://dx.doi.org/10.1017/S0140525X01003922
http://dx.doi.org/10.1002/bdm.683
http://dx.doi.org/10.1037/a0024558
http://dx.doi.org/10.1002/bdm.598
http://dx.doi.org/10.1007/978-1-4939-2236-9_2
http://dx.doi.org/10.1007/978-1-4939-2236-9_2
http://dx.doi.org/10.1016/j.tics.2009.09.004
http://dx.doi.org/10.1016/j.tics.2009.09.004
http://dx.doi.org/10.1177/0956797610387443
http://dx.doi.org/10.1177/0956797610387443
http://dx.doi.org/10.1016/0010-0285%2892%2990002-J
http://dx.doi.org/10.1016/0010-0285%2892%2990002-J
http://dx.doi.org/10.1007/s10683-006-9136-y
http://dx.doi.org/10.1016/j.cognition.2012.06.002
http://dx.doi.org/10.1037/0033-295X.103.2.309
http://dx.doi.org/10.1016/j.jmp.2005.06.008
http://dx.doi.org/10.1037/a0016104
http://dx.doi.org/10.1037/a0016104
http://dx.doi.org/10.1016/j.cogpsych.2003.11.001
http://dx.doi.org/10.1016/j.cogpsych.2003.11.001
http://dx.doi.org/10.1037/a0027637
http://dx.doi.org/10.1257/0002828054201387
http://dx.doi.org/10.1257/0002828054201387
http://www.R-project.org/
https://www.researchgate.net/publication/51139718_Comparison_of_Decision_Learning_Models_Using_the_Generalization_Criterion_Method?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/51139718_Comparison_of_Decision_Learning_Models_Using_the_Generalization_Criterion_Method?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/51139718_Comparison_of_Decision_Learning_Models_Using_the_Generalization_Criterion_Method?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/51139718_Comparison_of_Decision_Learning_Models_Using_the_Generalization_Criterion_Method?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/284399661_Information_Theory_and_an_Extension_of_the_Maximum_Likelihood_Principle?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/284399661_Information_Theory_and_an_Extension_of_the_Maximum_Likelihood_Principle?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/284399661_Information_Theory_and_an_Extension_of_the_Maximum_Likelihood_Principle?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/284399661_Information_Theory_and_an_Extension_of_the_Maximum_Likelihood_Principle?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/270960130_The_Atomic_Components_of_Thought?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/270960130_The_Atomic_Components_of_Thought?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/17296932_Measuring_Utility_By_a_Single-response_Sequential_Method?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/17296932_Measuring_Utility_By_a_Single-response_Sequential_Method?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/17296932_Measuring_Utility_By_a_Single-response_Sequential_Method?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/256476402_Model_Selection_And_Multimodel_Inference_A_Practical_Information-_Theoretic_Approach?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/256476402_Model_Selection_And_Multimodel_Inference_A_Practical_Information-_Theoretic_Approach?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/256476402_Model_Selection_And_Multimodel_Inference_A_Practical_Information-_Theoretic_Approach?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/5152269_Which_Error_Story_is_Best?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/5152269_Which_Error_Story_is_Best?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/5152269_Which_Error_Story_is_Best?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/11830840_The_Magical_Number_4_in_Short-Term_Memory_A_Reconsideration_of_Mental_Storage_Capacity?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227707441_A_choice_prediction_competition_Choices_from_experience_and_from_description_T_Rakow_B_R_Newell_Eds?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227707441_A_choice_prediction_competition_Choices_from_experience_and_from_description_T_Rakow_B_R_Newell_Eds?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227707441_A_choice_prediction_competition_Choices_from_experience_and_from_description_T_Rakow_B_R_Newell_Eds?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227707441_A_choice_prediction_competition_Choices_from_experience_and_from_description_T_Rakow_B_R_Newell_Eds?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/221241066_PORT_-_A_Portable_Mathematical_Subroutine_Library?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/221241066_PORT_-_A_Portable_Mathematical_Subroutine_Library?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/51537549_Instance-Based_Learning_Integrating_Sampling_and_Repeated_Decisions_From_Experience?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/51537549_Instance-Based_Learning_Integrating_Sampling_and_Repeated_Decisions_From_Experience?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/51537549_Instance-Based_Learning_Integrating_Sampling_and_Repeated_Decisions_From_Experience?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227651809_The_Description-Experience_Gap_in_Risky_Choice_The_Role_of_Sample_Size_and_Experienced_Probabilities?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227651809_The_Description-Experience_Gap_in_Risky_Choice_The_Role_of_Sample_Size_and_Experienced_Probabilities?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227651809_The_Description-Experience_Gap_in_Risky_Choice_The_Role_of_Sample_Size_and_Experienced_Probabilities?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/227651809_The_Description-Experience_Gap_in_Risky_Choice_The_Role_of_Sample_Size_and_Experienced_Probabilities?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/38017487_The_Description-Experience_gap_in_risky_choice?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/38017487_The_Description-Experience_gap_in_risky_choice?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/38017487_The_Description-Experience_gap_in_risky_choice?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/47544152_Information_Search_in_Decisions_From_Experience_Do_Our_Patterns_of_Sampling_Foreshadow_Our_Decisions?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/47544152_Information_Search_in_Decisions_From_Experience_Do_Our_Patterns_of_Sampling_Foreshadow_Our_Decisions?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/47544152_Information_Search_in_Decisions_From_Experience_Do_Our_Patterns_of_Sampling_Foreshadow_Our_Decisions?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/47544152_Information_Search_in_Decisions_From_Experience_Do_Our_Patterns_of_Sampling_Foreshadow_Our_Decisions?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/232326717_Order_Effect_in_Belief_Updating_The_Belief-Adjustment_Model?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/232326717_Order_Effect_in_Belief_Updating_The_Belief-Adjustment_Model?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/232326717_Order_Effect_in_Belief_Updating_The_Belief-Adjustment_Model?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/257925385_Computational_Modeling_in_Cognition_Principles_and_Practice?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/257925385_Computational_Modeling_in_Cognition_Principles_and_Practice?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/257925385_Computational_Modeling_in_Cognition_Principles_and_Practice?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/257925385_Computational_Modeling_in_Cognition_Principles_and_Practice?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/222573666_Model_selection_by_normalized_maximum_likelihood?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/222573666_Model_selection_by_normalized_maximum_likelihood?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/222573666_Model_selection_by_normalized_maximum_likelihood?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/221695078_Constructing_Preference_From_Experience_The_Endowment_Effect_Reflected_in_External_Information_Search?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/221695078_Constructing_Preference_From_Experience_The_Endowment_Effect_Reflected_in_External_Information_Search?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/221695078_Constructing_Preference_From_Experience_The_Endowment_Effect_Reflected_in_External_Information_Search?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==
https://www.researchgate.net/publication/221695078_Constructing_Preference_From_Experience_The_Endowment_Effect_Reflected_in_External_Information_Search?el=1_x_8&enrichId=rgreq-c16f19b4-459e-4977-8660-bf4363dcc985&enrichSource=Y292ZXJQYWdlOzI3NzcxNDgxMjtBUzozMTcwNjYwOTgyMTY5NjFAMTQ1MjYwNTg1NjU4NQ==


Journal of Risk and Uncertainty, 3, 177–190. http://dx.doi.org/10.1007/
BF00056371

Scheibehenne, B., & Pachur, T. (2015). Using Bayesian hierarchical pa-
rameter estimation to assess the generalizability of cognitive models of
choice. Psychonomic Bulletin & Review, 22, 391–407. http://dx.doi.org/
10.3758/s13423-014-0684-4

Schwarz, G. (1978). Estimating the dimension of a model. Annals of
Statistics, 6, 461–464. http://dx.doi.org/10.1214/aos/1176344136

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory:
Cumulative representation of uncertainty. Journal of Risk
and Uncertainty, 5, 297–323. http://dx.doi.org/10.1007/BF001
22574

Vrieze, S. I. (2012). Model selection and psychological theory: A discus-
sion of the differences between the Akaike information

criterion (AIC) and the Bayesian information criterion (BIC). Psycho-
logical Methods, 17, 228–243. http://dx.doi.org/10.1037/a0027127

Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using
Akaike weights. Psychonomic Bulletin & Review, 11, 192–196. http://
dx.doi.org/10.3758/BF03206482

Wulff, D. U., Hills, T. T., & Hertwig, R. (2012). Adaptive information
search and decision making over single and repeated plays. In N.
Miyake, D. Peebles, & R. P. Cooper (Eds.), Building bridges across
cognitive sciences around the world: Proceedings of the 34th Annual
Conference of the Cognitive Science Society (pp. 1167–1172). Austin,
TX: Cognitive Science Society.

Wulff, D. U., Hills, T. T., & Hertwig, R. (2014). Online product reviews
and the description–experience gap. Journal of Behavioral Decision
Making. Advance online publication.

Appendix A

Parameter Estimation in the Monte Carlo Simulation and Model Recovery

The models were fitted to the valuation of each simulated
participant by maximizing log-likelihood over all J lotteries, using
a normally distributed noise:

LL ! log()
j

J

1

)*2*e
"

1
2"vj " mj

) #2

+&4, mj, )' " +&0, mj, )'+, (A1)

with mj being the predicted valuation of the model, vj being the
data, and * being the cumulative normal probability distribution.
Note that this formalization does not specify the source of the
noise; it could, for instance, result from error in response selection
(e.g., trembling hand), noise in the actual valuation process (e.g.,
error in retrieval from memory), or an invalid model of the
process. VUM and SWIM were implemented as defined in Equa-
tions 1 and 2. The predicted valuation of SUM at the nth sample,
based across all n sampled outcomes, was defined as

vn !
1

n%i

n

xi. (A2)

The VUM parameters ' and ! (see Equations A1 and 1) were
jointly estimated using R (R Core Team, 2013) via a quasi-Newton
minimization procedure from the PORT library (Fox, 1997). The
same procedure was applied for the SUM. To estimate the SWIM
parameters, we used a different approach, as stable estimates were
obtained only when the starting points for the window size were
close to the true window size. Instead, we performed an exhaustive
search for the window size % and optimized the LL for each
discrete value of % to find the optimal value of ', again using
PORT routines. In the rare cases (less than 1% of runs) in which
multiple window sizes led to the same optimal fit, the smaller
value was chosen, consistent with Ashby and Rakow (2014). To
avoid local minima, we repeated the fitting for several start values
for ' and %.

Appendix B

Simulation: Estimation of SWIM’s Window Size from Noisy Valuations

Our simulation demonstrating the impact of noise on the estimation
of the SWIM window size was conducted as follows. For a broad
range of sample size and noise levels, we simulated 1,000 agents
completing the valuation task used in Ashby and Rakow (2014). The
sample sizes and noise levels were set such that they covered 95% of
the average (across trials) sample sizes and standard deviations, ',
reported by Ashby and Rakow, namely 1 & sample size ' 40 and
.01 & ' ' 1.15. Each of the agents first took a fixed number of
samples for each of 40 lotteries (which are reported in Ashby &
Rakow’s 2014 supplemental material) and then provided valuations
based on a truncated normal distribution centered on the mean out-
come of the respective sample (i.e., it was assumed that the window
size equaled the sample size, % $ n). We then fitted the SWIM to each

simulated agent’s data (corresponding to Appendix A, but using a
nontruncated normal to match the approach taken by Ashby and
Rakow) and estimated the window size and noise level for each
simulated agent. Finally, to evaluate the empirical window-size esti-
mates, we matched each participant in Studies 1 and 2 to the condi-
tions in our simulation that were closest in terms of sample size and
noise level. This resulted in an average proportion of sample size to
window size of .87, which is very close to the value of .86 reported by
Ashby and Rakow for their empirical data.
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