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Abstract

Cognitive science invokes semantic networks to explain diverse phenomena
from reasoning to memory retrieval and creativity. While diverse approaches
are available, researchers commonly assume a single underlying semantic net-
work that is shared across individuals. Yet, semantic networks are considered
the product of experience implying that individual who make different expe-
riences should possess different semantic networks. By studying differences
between younger and older adults, we demonstrate that this is the case.
Using a network analytic approach and diverse empirical data, we present
converging evidence of age-related differences in semantic networks of groups
and, for the first time, individuals. Specifically, semantic networks of older
adults exhibited larger degrees, less clustering, and longer path lengths. Fur-
thermore, the edge weight distributions of older adults individual networks
exhibited significantly more skew and higher entropy across node pairs and,
except for unrelated node pairs, less inter-individual agreement, suggesting
that older adults networks are generally more distinct than younger adults
networks. Our results challenge the common conception of a single seman-
tic network shared by individuals and highlight the importance of individual
differences in cognitive modeling. They also present valuable benchmarks to
discern between theories of age-related changes in cognitive performance.
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1. Introduction

Semantic networks are a key ingredient of research in diverse areas of
cognitive science [1, 2, 3]. With diverse cognitive processes operating on
them, they have delivered explanations to important cognitive phenomena
concerning reasoning [4], free associations and similarity ratings [5], language
development [6, 7, 8], creativity [9, 10], or search in memory in healthy indi-
viduals [11, 12] and patients [13]. For instance, De Deyne et al. [14] showed
that a random walk process spreading through a semantic network will take
account of indirect connections between concepts permitting better predic-
tion of human judgments of similarity than any modeling focusing alone on
the two concepts at hand. Key such approaches of modeling human cognition
is the availability of semantic networks. Studies have relied on networks de-
rived from multiple sources including man-made taxonomies [4, 15], human
association data [16, 17], network growth models [7, 18], or machine learn-
ing algorithms learning from natural language [19, 20]. Commonly, such
approaches take a one-size-fits-all approach in that they assume a single se-
mantic network to describe all individuals or, at least, groups of individuals.
However, this introduces the problems of aggregation. Semantic networks
are the product of experience and learning [21, 22|. Assuming that every-
one possesses the same semantic network is, thus, equal to assuming that
people have made identical experiences in their. While some consistency is
expected due social forces, such as communuication and coordination [23],
one must individuals’ semantic networks to differ in both content and struc-
ture. This should be particularly the case in comparisons younger and older
adults. Older adults have been exposed to more and more different expe-
riences, which should have left traces in their semantic networks. To date
little is known on how aging or other individual differences impact people’s
semantic networks. To fill this gap, we use network analytic approaches and
diverse empirical data to uncover age-related differences in semantic networks
of groups and individuals.

1.1. The Aging Mental Lexicon

Compared to the ability to solve abstract problems or to quickly process
incoming information, which tend to decline with age [24], individuals’ store
of words and concepts, also known as the mental lexicon [14], takes a different
trajectory. Research on vocabulary has found vocabulary size to grow into
late age [25, 26]. These results imply that semantic networks of older adults
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should be larger than those of younger adults. This finding alone has inspired
a provocative hypothesis [27], namely that memory search demands associ-
ated with larger semantic networks may account for the decline observed in
other cognitive capacities that otherwise commonly attributed to cognitive
slowing [24, 28]. Simulation studies have shown that age-related effects on,
e.g., picture-naming or paired associative learning, can indeed been modeled
as resulting from a growing semantic network [27, 29], underlining the impor-
tance of understanding individual differences in semantic networks. Network
size is one aspect of semantic networks that is subject to change to across
age. Another is structure. Analogous to networks in other domains [30], the
structure of semantic networks exhibits small-world structure [31, 32, 33], im-
plying high local clustering and moderate average shortest path length, and
a (near) scale-free degree distribution, implying few words with many con-
nections and many words with few connections [34, 32]. Some evidence exist
that such macroscopic properties of networks are affected by aging. Using
data from free word associations, that require individuals to produce asso-
ciates to word cues presented to them, two recent studies both found older
adults networks to exhibit a lower average degree ((k)) and larger average
shortest path length (L), but they did not produce consistent results concern-
ing which network exhibited the larger average local clustering coefficient (C')
(35, 36]. See Materials and Methods for details on network measures. Similar
to network size, network structure can be expected to impact psychological
functioning [37, 38, 39, 40]. Work on creativity, for instance, suggests a link
between the creative abilities and lower path lengths and higher clustering
[41].

Based on previous research, semantic networks can be expected to un-
dergo noticeable and consequential age-related changes in terms of both size
and structure. How exactly these changes come about, however, is still rela-
tively unclear. Approaches to model the growth of semantic networks have
either focused on language learning during childhood [18, 7, 42] or paid no
attention to developmental at all [17, 19]. Yet, it seems useful, as a first at-
tempt to understand aging in semantic networks, to derive predictions from
existing growth models. To this end, we simulated growth using [32]’s model,
which was proposed to account for the small-worldness and scale-freeness of
adult semantic networks. Aside from the size of the network |V|, this model
has one parameter m governing the number of edges created for every new
node in the network. As we have no assumption, how this parameter, which
is intimately related to the average number of edges in the network, would
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change across the lifespan we implemented three regimes: growing, constant,
and declining. Figure 1 how growth effects three key indicators of network
structure. Crucially, the figure shows that non-increasing ms are able to pro-
duce the same pattern of results observed by empirical studies [36, 35]. This
result, which arises from natural unavoidable dependencies between (k), C,
and L [43, 44] implies that a single process may underlie the currently ob-
served differences between younger and older adult semantic networks. One
candidate for this process is network degradation [45, 46, 47]. That is, similar
to the neuronal networks, the semantic network could be subject to deteri-
oration. A technically similar, but, in spirit, very different explanation, is
that (k) declines as a function of increased discrimination [27]. By provid-
ing further evidence on the structural differences between younger and older
adults we seek to shed some light on the plausibility of either explanation.
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Figure 1: Simulation of semantic network aging using the Steyvers-Tenenbaum growth
model. The figure shows changes in average degree (k, left panel), average local clustering
coefficient (C, middle panel) and average shortest path length (L, right panel) as a function
of three regimes of network growth: stable, declining, and increasing connectivity, in which
the number of newly established connections per node is constant (grey), declines (yellow),
or increases over time (blue). Results are based on 1,000 repetitions per number of nodes.

1.2. Measuring age-related differences in semantic networks

In this study, we will, first, compare semantic networks of older and
younger adults derived from several verbal fluency data sets [48] using a
novel network inference approach. Verbal fluency tasks require participants
to report in a limited time window as many elements of a natural category,
such as animals or countries [49]. Using this data, we seek to confirm the
existing findings using a different method and different data sets. Second,
we extend existing findings by measuring individual-level semantic networks
via a similarity rating tasks. This allows us to sidestep two methodological
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problems associated with aggregate networks. First, there is no good way
to average across the presence and absence of edges and nodes. As a result,
aggregate networks usually reflect the union of individual networks rather
than their average, rendering the aggregate network unrepresentative of in-
dividual networks. Second, aggregate networks prevent standard statistical
inferences, as they provide only a single observation of its structural prop-
erties. We overcome these problems by letting individuals provide similarity
ratings on the same large set of word pairs using a continuous scale. This will
allow us to create comparable, weighted, and individualized networks that
can be subjected to standard statistical analyses. Finally, the distribution of
similarity ratings and how it differs between younger and older adults will
provide valuable insights on the processes underlying the age-related changes
in semantic networks.
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Figure 2: Methodological approach. Panel A illustrates the steps, edge inclusion and
filtering, involved in inferring networks from verbal fluency sequences. For details see
Materials and Methods. The resulting network is based on 142 sequences of the older
adults group of study 1. Panel B illustrates the creation of networks from similarity
ratings, involving merely normalization of individual’s responses. The weighted network
is based on the average ratings of the older adults group of study 3.
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2. Methods

2.1. Fluency data

A total of four data sets from three studies were used to infer networks
from fluency data. The first data set was obtained from [? ], who analyzed
the data of two published studies, i.e., from Hills et al. [50] and the Midlife in
the United States (MIDUS3) longitudinal study. The data of Hills et al. [50]
contains three waves of responses to one minute animal fluency task collected
at Stanford University, CA, in 2011. At time point one, the data included
a total of 201 participants aged 27 to 99 (Mdn = 68). To avoid practice
effects and problems associated with participant attrition, we used only the
first wave. The MIDUS3 data contained one minute animal fluency data -
recorded in phone interviews - from 104 individuals aged 34 to 83. Audio
recordings were transcribed by us (see Supplementary Material). In order to
obtain a sufficient amount of data to infer fluency networks, we joined the two
data sets, but eliminated individuals with fewer than 10 fluency productions
and mini-mental state values lower than 26, which is indicative of either low
attention to the task or beginning age-related disorders. Groups of younger
and older adults were created by splitting the data at the median age. This
resulted in groups of 142 individuals each aged 29 to 65 years old and 66 to
94 years old, respectively. Our first study with original data was collected in
the context of another study on age-difference in decision making running in
the laboratories of the Max Planck Institute (MPI) for Human Development,
Berlin. We collected 10 minute fluency data for both animals and countries
from 71 older adults and 41 younger adults. Responses were recorded using a
microphone and transcribed by us. Participants were recruited through the
internal participant database of the MPI of Human Development. The older
adults group ranged from 65 to 80 years with a median age of 70 years, the
younger adults age ranged from 17 to 33 with a median age of 25. Participants
were paid 10/hour for participation. The second study was also collected at
the Max Planck Institute for Human Development using participants from
the MPIs internal database. We collected 10 minute fluency data for animals
from 36 older adults and 36 younger adults. Responses were recorded using
a microphone and transcribed by us. The older adults group ranged from
65 to 78 years with a median age of 70 years, the younger adults age ranged
from 18 to 32 with a median age of 24. Participants were paid 10/hour for
participation. Study 1, 2 and 3 were approved by the internal review board
of the Max Planck Institute for Human Development.
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Fluency data was subjected to minimal preprocessing. Responses were
scrutinized for category membership and spelling. A lenient criterion was
used to assess category membership to retain as much of the original data
as possible. In the case of animals, all non-fictional entries that described
entire, non-human, and non-fictional animals were retained. This lead us
to exclude few cases from the data, such as Godzilla, cat eye, or animal
trainer. Similarly, in the case of countries, we retained all existing and named
territories such as Istrien, a region of Italy, Croatia and Slovenia, the desert
Sahara or cities, but not non-existing, fictional territories such as Middle-
earth. Spelling was hand-corrected on the basis of the Merriam Webster
online dictionary. Overall 96.8% to 99% of responses were retained in the
analysis.

2.2. Measures of macroscopic network structure

The average degree of a network G = (V, E), with nodes (or vertices)
V' and edges E, is defined as (k) = “V‘l for unweighted networks and as
(k) = W > geviizs G Wi, where a;; denotes the presence of an edge
between nodes ¢ and j and w;; the according edge weight. The average
degree or strength, as it is commonly referred to for weighted networks, de-
scribes the average connectivity in the network. The average local clustering

coefficient for unweighted networks is defined as C' = ﬁ > iev Ci with C; =
m ZMeNi a;, and k; being the degree of node 1 and N; the set of neigh-

bors to i. For weighted networks, C* = \szl(k = D i heN; R g iy
with s; = > jen; wj being the strength of node ¢, the weighted analog to
k;. The local clustering coefficient describes the degree of transitivity in the
network and is related to network modularity [51]. It is often conceived as
an indicator of the structured—ness of a network [52]. The average shortest
path length is defined as L = W >  ievizj Lij where Li; is the length
of shortest path between nodes i and 7, also known as the geodesic distance.
For weighted networks, L;; is the sum of weights rather than the length. The
average shortest path length describes the average distance between nodes.
Low average shortest path lengths have been associated with efficient infor-
mation processes [53, 54].

2.3. Networks inference approach

Networks were inferred from verbal fluency data based on the community
model developed by ? | and studied by Zemla and Austerweil [55]. The
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model is based on a two-step procedure. First, nodes and edges are included
for every pair of responses that occurred within a distance of [ responses. For
instance, for the response sequence dog, cat, mouse, rabbit and a criterion
of I = 2, edges would be included for all pairs less than three responses
apart, excluding only the pair dog and rabbit, which are three responses
apart. Second, an edge is identified as a true edge, if the frequency of the
connected words occurring with [ or fewer steps apart exceeded a frequency
threshold t,,;, reflecting the required minimum frequency of co-occurring
within [ responses to be considered in the first place, as well as a frequency

threshold tnence. The latter is derived from the probability pl*e? of two
linked __

z)

words occurring within [ responses by chance, which is calculated as p;

—ocU” " the probability of two words to co-
2! the probability that two responses

ij

: co—occur __ fifj

are no more than [ responses apart, are being calculated as pj; =
> 2

and pj; = N(Nfl)(—lNl(l;rl)) with f;, f; denoting the number of times two
responses occur across M sequence and N denotes the average number of
productions per sequence. t.pance is then defined as the 1 — o quantile of the
binomial distribution B(M, p{"*?). Based on the simulations reported in the
Supplementary Material, we found a minimal model with [ = 1, ¢,,;, = 1,

and a = 1 to the best recover the underlying network structure.

>l
* pi; - Furthermore, pg?

yCO—OcCcur

pij
occur within a fluency sequence, and p

2.4. Similarity ratings

Similarity ratings were collected in the context of study 2 and prior to
participants completing the verbal fluency task. Participants took home a
tablet to provide, over the course of roughly one week, on a scale from 1 to 20
similarity, ratings for 2268 pairs of animals, consisting of each possible pair of
63 frequently occurring animals and 315 repeated pairs. The 63 animals were
selected on the basis of the verbal fluency responses of study 1 in manner
that equated word frequency across younger and older adult age groups. See
Supplementary Material. Reliability was found to be high for both younger
and older adults with respective correlations of r = .76, » = .74. Participants
were paid 10/hour for participation in the lab session and a flat fee of 44.1
for providing the similarity ratings.
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3. Results

3.1. Differences in networks inferred from verbal fluency data

We inferred networks from verbal fluency sequences using the community
model, which has recently been found to predict human similarity ratings
very well and likely better than other approaches available [? 55]. As il-
lustrated in 2, the approach is based on two steps: First, edges for every
pair of items that occurred withing a distance of [ responses from another
and, second, edges are retain that occurred more often than a minimum cri-
terion t,,;, and what would be expected by chance given a false alarm rate
of a. For details see Methods. To validate this approach, we ran extensive
simulation analyses based on the specifications of our four fluency datasets.
For details see the Supplementary Material. These showed that a minimum
model of [ = 1, t,,;, = 0, and a = 1, essentially a random-walk threshold
model [13, 55], was able to best recover underlying networks. Assuming a
moderate network size and a censored random walk retrieval process [56, 55|,
this model detected 70.5% of the edges that could have been detected given
the available data, while committing only 6.8% of the edge false alarms that
the more lenient, random-walk model (¢,,;, = 0) would commit. Moreover,
this model recovered the macroscopic structure of the underlying network
well, as indicated by correlations of .95 and .79 between inferred and true
values of C' and L, respectively. Finally, the presence and absence of edges in
the inferred animal fluency networks was able to predict well the similarity
ratings collected in study 2 (d = (.88,1.32,1.53)).

Networks were inferred for younger and older adult groups of four fluency
datasets. The data sets varied in terms of domain (animal vs. country),
design (lifespan vs. cohort), and fluency duration (1 minute vs. 10 minute).
Among those factors, duration exerted a strong influence on performance,
with 10-minute fluency leading to 4 to 5 times as many responses per sequence
than 1-minute fluency. Notably, the longer duration allowed older adults to
produce as many, if not more, items than younger adults, contradicting the
typical observation of declining performance in verbal fluency [57, 58, 50].
Moreover, we found that older adults, as a group, produced more unique
responses both in total and per response, consistent with the notion that
adults possess larger vocabularies and, thus, may possess larger semantic
networks (see Table 1).

In order to account for differences in network sizes, which could obfuscate
differences in structure [43], we compared the macroscopic structure younger
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Table 1: An Overview of Fluency Data and their Inferred Macroscopic Network
Structure

Dataset N Age N v (k) C L
Wulff et 142 29-65 22.00 .09b &4 3.85 0.46 2.53
al. (2016) 142 66-94 18.60 .11° &7 3.33 0.38 2.83
Study 1- 41 1834 93.10 .15® 165° 1.85 024 4.72
Animal 71 66-81 101.80 .18 155° 1.69 0.24 5.09
Study 1- 41 18-34 77.60 .08 132° 294 0.36 3.67
Country 71 66-81  80.30 .11° 135 249 0.35 4.12
Study 2- 36 18-32 97.50 .17 141 1.72 0.26 4.66
Animal 36 65-78  98.10 .19 123 1.62 0.31 5.06

@ Tgnoring duplicate productions. ® Proportions were found to be
significantly different between younger and older adults according
to permutation tests. ¢ To equate the amount of data per group, the
older adults results are rounded averages of 200 random samples of
41 older individuals.

and older adult’s networks only for the shared set of nodes, i.e, their common
subgraph. We found the pattern of results to be consistent with previous re-
sults Zortea et al. [35], Dubossarsky et al. [36]. Older adult networks were
characterized by smaller average degrees and higher average path lengths
than networks of younger adults. Older adults’ networks also exhibited a
smaller average clustering coefficient than younger adults in two data sets
and a larger clustering coefficient in the other two data sets, mirroring the
inconsistent findings of previous studies [35, 36]. See Figure 3. These re-
sults confirm previous findings and strongly suggest age-related differences
in semantic networks.

3.2. Differences in networks based on similarity ratings

To test whether the results from fluency networks extend to the level
of the individuals and to rule out any influence of aggregation biases, we
measured networks of younger and older individuals using similarity ratings.
Specifically, we had individuals rate all 1953 pairs of 63 animals on a scale
from 1 (extremely unsimilar) to 20 (extremely similar) plus 315 repeated
pairs in order to assess reliability, which was found to be high (older adults:
r = .76, younger adults: r = .74). Before creating the networks, we mapped

10
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Figure 3: Differences in the macroscopic structure of younger and older networks. Grey
bars show the the difference between the young and old age group in Zortea et al. [35]
and that of age 30 and 70 in Dubossarsky et al. [36], respectively. Yellow bars show
differences in networks inferred from the four fluency data sets. Blue points show differ-
ences in weighted and unweighted similarity rating networks, with blue bars showing 95%
bootstrapped confidence intervals.

individuals’ minimum ratings to 0 and maximum ratings to 1, in order to
account for differences in scale use. Weighted and unweighted networks were
then constructed by including edges larger than w,,;,. The threshold w,,;,
was needed for two reasons. First, clustering can only be evaluated for net-
works that are not fully connected. Second, by varying the treshold we were
able to evaluate the robustness of the results. Across various values of w,,;,,
we found older adults’ networks to consistently exhibit lower average degrees
((k)), higher average shortest path length (L), and also lower local cluster-
ing coefficients (C), irrespective of whether the networks were analyzed as
a weighted or unweighted network. For highly inclusive values of w,,;, that
retain more than 50% of all edges, i.e., Wy € (0,.1) moderate to large ef-

11
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fects were observed, each reaching statistical significance. Effects for more
restrictive values of w,,ip, i.€., Wi > .1 pointed in the same direction, but
they were smaller in size and, due to larger variance, did not consistently
reach significance. These results confirm and extend findings from fluency
networks. Moreover, they demonstrate, for the first time, systematic age-
related differences in the structure of semantic networks on the level of the
individual.

Table 2: Average Macroscopic Structure of Similarity Networks
for wpmin € (0,.1,.2)

Weighted Unweighted

V| (k) C L (k) C L

YA 63 16 .87 .13 50.7 .86 1.16
OA 629 125 .75 18 37.0 .73 147

d 42 .51 73% -.46 94% .74 -93¢
YA 63 155 .77 24 424 76 1.31
OA 62.7 12 .67 38 29 66 1.72
d 34 .50 .56% -.88% 85 .56% -.93%

YA 628 136 .64 .56 285 .62 1.66
OA 618 11 .59 .80 21.2 .57 2,04
d S0 39 33 -.85¢ D44 31 -.63¢

ap < .05

3.3. Comparison of edge weights

What drives the structural differences between networks of younger and
older adults? To shed light on this question, we compared the distribu-
tion of edge weights in the similarity networks. As illustrated in Figure 4A
adults’ edge weight distributions were found to be significantly more skewed
(ts3s = —2.02, p = .049, d = —.48) and of significantly smaller entropy
(ts6.0 = 3.46, p = .001, d = .82) than those of younger adults. The same
pattern was observed on the level of individual nodes. Nodes in older adults
networks exhibited edge weight distribution that also were significantly more
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skewed (t1142 = —3.89, p < .001, d = —.69) and of significantly smaller
entropy (t107.7 = 5.33, p < .001, d = .95) than nodes in younger adult net-
works. We also compared the distribution of edge weights between younger
and older adults’ networks (Figure 4B) and found that older adults’ networks
show lower edge weights than younger adults’ networks, particularly, for those
edges that possess moderate weights in the younger adults networks. Consis-
tent with results obtained for aggregate networks [36], these results suggest
higher discrimination of semantic relatedness in older as compared to younger
adults. Specifically, in older adults networks, items of medium relatedness
appear to have been driven further away from maximum similarity than in
younger adults networks.

We evaluated compared within-group consistency by measuring the inter-
quartile ranges (IQR,,) for each edge within a group. We found that older
adults’ networks showed a nearly three times higher dispersion of IQRs
than younger adults (02,4er = .029, 0% 0unger = .011). This higher disper-
sion stems from older adults showing significantly higher consistency (d =
—9.04,p < .001) for weakly related node pairs, i.e., 0 < w < .2, and sig-
nificantly lower consistency highly for related noted pairs, i.e, .2 < w < 1,
showing maximum inconsistency for .4 < w < .6 (d = 1.57,p < .001). Thus,
except for relatively unrelated node pairs, such as rat and fly, older adults
semantic networks tend to be more different from one another than those of
younger adults.

4. Discussion

Semantic networks are a key ingredient of many models of cognition.
They provide the underlying knowledge base that allow cognitive processes
to reason whether a penguin is bird or to remember the name of a person,
you have just met. This knowledge base is the product of learning from expe-
rience [19, 59]. Individuals who make different amounts and different kinds
of experiences should, thus, possess different semantic networks. In this in-
vestigation, we have demonstrated that this assertion holds true. Studying
the association of age and semantic networks, we have found structural dif-
ferences in networks of groups and individuals. Group-level analyses using
verbal fluency data have replicated previously observed [35, 36] differences be-
tween networks of younger and older: Older adults’ networks exhibited larger
average degrees and lower average shortest path lengths than younger adults’
networks and they did not systematically differ in terms average clustering
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Figure 4: Comparison of edge weights in younger and older adults’ networks. Panel A
shows the individual and aggregate density distribution of edge weights for younger (blue)
and older adults (yellow). Panel B shows the differences in edge weights between younger
and older adults as a function of the younger adults edge weights (in blue). The grey
background shows the expected result distribution (determined by simulation) assuming
the marginal distributions in panel A and independence between edge weights of younger
and older adults. Panel C illustrates within-group differences in edge weights by showing as
polygons the edge weights interquartile range across individuals for all 1953 pairs ordered
by the pair’s average weight across both groups. Panel D shows the relationship between
the a pairs’ average edge weights and the associated interquartile ranges

coefficients. Individual-level analyses of weighted and unweighted networks
based on similarity ratings confirmed the differences in average degrees and
lower average shortest path lengths and also revealed systematic differences
in terms of average clustering coefficients, pointing to lower clustering in older
adults semantic networks. These results establish, for the first time, conclu-
sive evidence for structural, indivudal-level differences in semantic networks
of younger and older adults.

Our results have important implications for understanding and modeling
human cognition. It is generally assumed that differences in size and struc-
ture of semantic networks can manifest in differences in cognitive performance
(37, 38, 39, 40, 27, 29, 19]. This creates a thorny problem: Both network
structure and cognitive process can independently be powerful explanations
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of behavior, which can render it difficult to decide between competing models.
Recently, a version of this problem has been at the core of a debate concern-
ing models of human memory search. It was found that a simple random
walk process operating on a network generated from free association data
was able to explain verbal fluency data just as well as previously proposed,
more complex cue-based search process operating on a network generated
from natural language data using machine learning [56, 21, 11]. Thus, differ-
ent choices concerning the underlying semantic network can critically impact
conclusions drawn from data regarding the cognitive process, not even con-
sidering individual differences. A key challenge for future research is, thus,
to develop new methodological approaches to reliably measure the semantic
network of groups and individuals free of influences of process [21, 60]. This
will involve characterizing the linguistic and physical environment of individ-
uals and to develop appropriate learning mechanisms that build a realistic
image of a person’s semantic network.

4.1. What drives age-related differences in network structure?

Another, related challenge is the development of models of age-related
differences. Both Zortea et al. [35] and Dubossarsky et al. [36] had studied
semantic networks across the entire lifespan, including children, and observed
inverted U-shaped trends with inflection points at around 30 years of age.
Because of this, it seems unlikely that network growth models, such the
one by Steyvers and Tenenbaum [17], are able to capture the full develop-
mental trajectory, as they tend to grow monotonically. A probably more
fruitful approach is the use of models of computational semantics (e.g., [19]),
which learn representations from natural language, and a language corpus
that is age-specific. The input to the cognitive system, in this case text,
is often ignored and may account for some of the observed developmental
non-linearities. The goal of such an agenda should be how much of the ob-
served findings can be explained through natural learning, in order to find
out whether and which additional aging process need be assumed [45, 46, 47].

For this agenda, it will be useful to consider the complex edge-weight
differences between younger and older adults. Compared to younger adults
networks, We found the distribution of edge weights in older adults net-
works to be considerably more right-skewed and most different from younger
adults networks for moderate edge weights. Moreover, we found older adults
networks to be more similar to each other for unrelated node pairs, and
more distinct from each other for related node pairs as compared to younger
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adults networks. These patterns can, at least in parts, arise from natural de-
velopment. Models of continued discriminative learning predict that related
and unrelated concepts are driven further apart from each other over time

29].

Moreover, the fact that younger adults will likely have spend about

half their life in educational institutions and, thus, in highly similar environ-
ments, whereas the relevance of education is much lower for older adults, may
explain the considerably lower dispersion among younger than among older
adults. Thus, the demonstrated structural differences between younger and
older adults may not reflect decline, but continued learning and a possibly
quite useful adaptation to the requirements of older adults life [61].
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