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Abstract 

How does the mental lexicon, the network of learned words in 
our semantic memory, change in old age? To address this 
question, we employ a new network inference method to infer 
networks from verbal fluency data of a group of younger and 
older adults. We find that older adults produce more unique 
words in verbal fluency tasks than younger adults. In line with 
recent theorizing, this suggests a larger mental lexicon for 
older than for younger adults. Moreover, we find that relative 
to the mental lexicon of younger adults, the mental lexicon of 
older adults is less small-world-like. Based on several 
findings linking network clustering to processing speed, this 
finding suggests that not only the size, but also the structure 
of the mental lexicon may contribute to apparent cognitive 
decline in old age. 

Keywords: Semantic representation, networks, small world, 
verbal fluency, aging.  

Introduction 
Cognitive science commonly depicts semantic memory as 

a random walk traversing a network of concepts or words, 
often called the mental lexicon (Abbot, Austerweil, Griffith, 
2015; Anderson, 1983; Collins & Loftus, 1975; De Deyne, 
Verheyen, & Storms, 2014; Hills, Todd, & Jones, 2012; 
Miller, 1995; Vitevich, 2011). A corollary of this view is 
that the structure of the network should impact memory 
performance (Jones, Hills, Todd, 2015; Vitevich, 2008; 
Borge-Holthoefer & Arenas, 2010). Several studies have 
attempted to measure the mental lexicon using memory 
productions from free association or natural language 
(Ferrer-i-Cancho & Sole, 2001; Steyvers & Tenenbaum, 
2005; Morais, Olssen, & Schooler, 2013). They concluded 
that the macroscopic structure of the mental lexicon follows, 

similar to networks is other domains, a small-world 
structure, implying higher clustering and equal average path 
length than found in random networks (Humphries & 
Gurney, 2008; Steyvers & Tenenbaum, 2005; Watts & 
Strogatz, 1998). However, whether this aggregate pattern 
also characterizes the mental lexica of individuals is far 
from understood. As a first step toward answering this 
question, we will apply in this investigation a new network 
inference method to study and compare the small world-
ness of younger and older adults’ mental lexica based on 
verbal fluency data. 

The Aging Mental Lexicon 
Semantic memory follows a unique developmental 

trajectory across later age. Whereas episodic memory and 
fluid abilities, such as working memory capacity, peak in 
early adulthood, the performance of semantic memory, as 
measured by vocabulary tests, increases until age 65 to 70 
(Hartshorne & Germine, 2015; Keuleers, Stevens, Mandera, 
& Brysbaert, 2015) or even beyond (Kavé & Halamish, 
2015)1. Recently, it was argued that the positive trend for 
semantic memory might actually be responsible for the poor 
performance of older adults in other cognitive variables 
(Ramscar, Hendrix, Shaoul, Milin, & Baayen, 2014). 
Specifically, if older adults have access to an increasing 
number of words, then their mental lexicon must be larger. 
As with finding a book in a large as compared to a small 
library, retrieving information from a large mental lexicon 

                                                
1 Moreover, linguistic analyses suggest that common vocabulary 

tests underestimate the true vocabulary size for older adults 
(Baayen, 2001). 



should take more time and be more error prone, than in a 
small mental lexicon. The apparent cognitive decline in 
older adults – usually attributed to a general cognitive 
slowing for older adults due to neuronal deterioration 
(Light, 1991) – may thus arise from changes in older adults 
mental lexica. 

As size of the mental lexicon can impact the performance 
of the memory system, so should its structure (Baronchelli, 
Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen, 
2013). Previous research has successfully connected a 
network’s clustering coefficient to processing speed 
(Nematzadeh, Ferrara, Flammini, & Ahn, 2014; Vitevich, et 
al., 2011), enhanced priming effects (Nelson & Goodmon, 
2002), as well as facilitated recognition and recall (Nelson, 
Bennett, Gee, Schreiber, & McKinney, 1993; Nelson, 
Zhang, & McKinley, 2001). Furthermore, the structure of 
the mental lexicon is naturally related the meaning of words, 
categorization, and language itself (Borge-Holthofer & 
Arenas, 2010; De Deyne, Verheyen, & Storms, 2014; Jones 
& Mewhort, 2007). 

To our knowledge, no previous study assessed the effect 
of aging on the structure of the mental lexicon. Existing 
research rather focused on the early developmental 
trajectory of the mental lexicon in children (e.g., Hills, 
Maouene, Maouene, Sheya, & Smith, 2009; Beckage, 
Smith, & Hills, 2011). Hills and colleagues (2009) found 
evidence in favor of preferential acquisition process, in 
which words are learned as a function the words’ degree of 
connectedness in the learning environment. More research is 
needed to corroborate this finding and it is unclear whether 
these trends can be extrapolated to later life. We therefore 
aim to help investigate the structural development of the 
aging mental lexicon. 

Present Study 
In this investigation we provide a first peek into the 

mental lexicon’s adult development by comparing mental 
lexica of younger and older adults as inferred from verbal 
fluency data. Doing this we will focus on the average local 
clustering coefficient, the average shortest path length, and 
the small world-ness of young and older adults’ semantic 
networks. Out of the many network statistics, the clustering 
coefficient is most prominent. It is also the only network 
statistic that has been causally connected to memory 
performance (Vitevich et al., 2011). The average shortest 
path length has not been linked to memory performance, 
however, it carries an intuitive interpretation: Networks with 
larger average shortest path lengths should lead to slower 
and less flexible recall performance. Finally, as a composite 
measure of the clustering coefficient and the average 
shortest path length, small world-ness speaks to the global 
structure of a network. Many natural occurring networks 
exhibit a small world structure, including importantly word 
occurrences in natural language (Ferrer-i-Cancho & Solé, 
2001). Small world networks have been found to “display 
enhanced signal-propagation speed, computational power, 
and synchronizability” (Watts & Strogatz, 1998, p. 440).  

Method 

Data 
The data for our analysis was comprised of 60 seconds 

animal fluency data from a total of 332 participants. Verbal 
fluency tests ask participants to list within a defined time 
window as many members of a natural category as they can 
think of. The dataset was composed of the data from two 
independent studies, 228 (18.6 animals on average) 
participants from Hills, Mata, Wilke, and Samanez-Larkin  
(2013) and 104 participants (21.8 animals on average) from 
a subsample from the Midlife in the United States study 
(MIDUS; Lachman, Agrigoroaei, Tun, & Weaver, 2013). 
The data of the latter was transcribed by us from audio 
recordings using the Penn TotalRecall2 software. Following 
Lerner, Ogrocki, and Thomas (2009), the datasets were 
subjected to preprocessing, in which variants of the same 
animal were combined (‘kitten’ and ‘kitty’), but alternate 
forms of the same species were retained (‘cow’ and ‘calf’). 
We removed 36 participants for low scores on a dementia 
screener (value < 26; Folstein, Folstein, & McHugh, 1975) 
and 16 for producing too few animals (n < 10). A total of 
284 participants entered the analysis, with age ranging from 
29 to 94 and number of produced animals from 10 to 39. 
Figure 1 illustrates the sample. For the comparison of older 
and younger adults we performed a median split on age, 
resulting in a group of 142 younger adults, aged 29 to 65, 
producing on average 22 animals, and a group of 142 older 
adults, aged 66 to 94, producing on average 18.8 animals 
(see also Table 1). 

 
Figure 1: Illustration of the data used to infer the mental 

lexica of younger and older adults. 
 
 

Table 1: Description of the raw data after median split. 

                                                
2 http://memory.psych.upenn.edu/TotalRecall 
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   Mean Unique recalls 

Group N Age recalled NU NU / NT 
Younger 
Adults 142 19 – 

65 22 287 .091 

Older 
Adults 142 66 – 

94 18.8 284 .106 

Legend: NU /NU – Number of unique/total words 

Network Inference Method 
To infer the mental lexicon of younger and older adults 

from verbal fluency data, we borrow from the statistical 
procedure developed by Goñi et al. (2011). The method 
assesses for every two words whether they co-occur more 
frequently than would be expected by chance. Figure 2 
illustrates the three steps of the procedure. In the first step 
(a), a window of size w moves through all verbal fluency 
sequences of one group and records the number of times 
two words co-occur within the window. For instance, if w = 
3, then all pairs of words with no more than one intervening 
word entered the next step of the analysis. In the second step 

(b), a non-weighted, undirected graph is created from the 
pairs that co-occurred more often than a minimum threshold 
of m. For example, if m = 2, then all pairs of words that co-
occurred at least twice entered the final step of the analysis. 
Finally, in the third step (c), the recorded frequency of co-
occurrence is tested against the random expectation based 
on the marginal frequencies of words and the lengths of the 
verbal fluency sequences3. Specifically, an edge between a 
pair of nodes is retained whenever likelihood of the 
frequency of co-occurrence under the random model 
surpasses a lower threshold c. As can be seen in the example 
given, in the bottom panel of Figure 2 the method produces 
highly intuitive networks. The network shown is based on 
the older adults data and w = 3, m = 3, and c = .05.  

Relative to other methods that are used to construct 
networks from verbal fluency data, our method has two 
important advantages. First, it is the only method based on 
the common contention that related words co-occur within 
relatively small window sizes, often no more than two or 
three words apart (Abbot et al., 2015; Troyer et al., 1997; 
Hills, Jones, & Todd, 2012, Wulff, Hills, & Hertwig, 2013). 
Second, the flexible parameterization allows to map 
different parts of the mental lexicon. Specifically, increasing 
the minimum co-occurrence parameter m means that only 
the strongly connected core network will be assessed 
(Baronchelli et al., 2013). A similar case can be made for 
the window size parameter w.  

A critical aspect of investigations into the macroscopic 
properties of networks is statistical inference. When the 
endpoint of the investigation is a single network, one cannot 
rely on standard statistical procedures. Often the only 
possibility to generate standard errors lies in bootstrap 
methods that repeatedly construct subnetworks from 
randomly selected nodes and edges. The reliability of such 
methods is, however, contested (Sneijders & Borgatti, 
1999). To circumvent these issues, we chose to bootstrap 
participants instead of subnetworks. Specifically, we 
inferred as many networks as there were participants in a 
group according to a leave-one-out procedure (Efron & 
Efron, 1982; Sneijders & Borgatti, 1999). We then 
compared network measures between the groups based on 
the pooled standard deviations computed across the 142 
leave-one-out-networks for each of the groups.  

Network Measures 
We focus in our analyses on the two network measures 

constituting a small world: The average (local) clustering 
coefficient and the average shortest path length. The 
clustering coefficient C, sometimes also called transitivity, 
refers to the proportion of cases in which the neighbors of a 
node are neighbors themselves. The shortest path length of 
two nodes L refers to the length of the shortest possible way 
to traverse from one node to the other. The average 
clustering coefficient and the average shortest path length 

                                                
3 For details see Goñi et al. (2011). 

Figure 2. Illustration of the network inference method. 



are both computed as the arithmetic mean of their respective 
measures.  

To counter known dependencies of the clustering 
coefficient and the shortest path length on the size and 
connectedness of the network (von Wijk, Stam, & 
Daffertshofer, 2010), we measure both variables relative the 
expectations of a Erdos-Renyi random graph (Bollobas, 
2001). In addition, to prevent influences from the outset of 
the analysis, we match the data of younger and older adults. 
Specifically, we implemented the following matching 
scheme: First, we included older and younger adults with 
exact matches in samples size of fluency productions. 
Second, for all participants that could not be matched in the 
first round, we identified for each older adult the younger 
counterpart whose number of productions lay closest, 
cropped the extra productions at the end produced by the 
young adult, and included the pair. The matched data 
included 5230 productions, representing about 90% of the 
original 5802 productions. All of the following results hold 
for an alternative matching scheme in which young adults’ 
extra productions were cropped at the beginning. 

We also include in our analysis the small-world-ness 
index S developed by Humphries and Gurney (2008). This 
measures combines the clustering coefficient and the 
average shortest path into a single metric, while controlling 

for the expectations of a Watts-Strogatz small world 
network. The measure indicates small-world-ness for values 
> 1. 

Results 

Unique Productions 
First, we turn to the number of unique productions. 

Although younger adults produced slightly more unique 
animals in total, older adults produced more unique items 
per production, which was both, significant and substantial, 
according to a bootstrap test (d = -1.9, p < .001). This 
finding is consistent with the idea that a larger mental 
lexicon slows the productions of older adults (Ramscar et 
al., 2012).  
 

Network Comparison 
Figure 3 shows the results of our network inference for 

the number of nodes in the resulting graph (N), the average 
clustering coefficient relative to random (C/Crand), the 
average shortest path length relative to random (L/Lrand), and 
the small-world-ness index S. Specifically, the figure 
displays for each measure the median result of the 142 

Figure 3. Macroscopic properties of the mental lexicon of older and younger adults as 
inferred from verbal fluency data.  

236 237 237 236 237

120 131 135 142 141

74 89 96 100 104

69 73 79 82

56 64 67 67

282 282 280 280 280

106 125 129 140 147

76 88 92 93

62 67 70 72

50 56 57 59

0

75

150

225

300

0

75

150

225

300

0 −50

−25

0

25

50

−46 −45 −43 −44 −43

14 6 6 2 −6

13 8 8 11

7 6 9 10

8 10 8

N N

YA OA YA − OA

1
2
3
4
5

M
in

. c
o−

oc
cu

r.

4.4 9.7 8.9 8.5 8.4

6.6 7.8 6.8 7 7.4

5.5 7.2 8.2 7.5 7

6.9 8 7.3 7.2

5.7 7.3 7.5

5 13.6 13.3 12.4 11

5.5 8.1 8.4 7.6 8.1

7 7.3 6 6.3

6.3 6 5.8 5.7

6 5.5 4.9

0

3.4

6.8

10.2

13.6

0

3.4

6.8

10.2

13.6

0 −5

−2.5

0

2.5

5

−0.6 −3.9 −4.3 −3.9 −2.6

1.2 −0.3 −1.6 −0.6 −0.7

0.2 1 1.5 0.7

0.6 2 1.4 1.5

1.9 2.5

C
C
ra
nd

C
C
ra
nd

1
2
3
4
5

M
in

. c
o−

oc
cu

r.

1 1.1 1.1 1.2 1.2

1.1 1.1 1.2 1.2 1.2

1.1 1.1 1.2 1.2 1.2

1.3 1.3 1.3 1.4

1.6 1.5 1.5

1.1 1.1 1.2 1.2 1.2

1.1 1.3 1.2 1.2 1.1

1.3 1.2 1.2 1.1

1.4 1.5 1.2 1.2

1.6 1.7 1.3

0

0.42

0.85

1.27

1.7

0

0.42

0.85

1.27

1.7

0 −0.3

−0.15

0

0.15

0.3

0 0 0 0 0

0 −0.1 0 0 0

−0.2 −0.1 0 0.1

−0.1 −0.2 0 0.2

−0.2 0.2

L
L r

an
d

L
L r

an
d

1
2
3
4
5

M
in

. c
o−

oc
cu

r.

4.2 8.7 7.9 7.3 7.1

6.2 6.8 5.9 6 6.2

4.8 6.3 7.1 6.3 5.7

5.3 5.9 5.7 5.2

3.5 5 4.9

4.7 12 11.5 10.7 9.3

5 6.4 7 6.5 7

5.2 5.9 5.2 5.5

4.4 4 4.7 4.7

3.8 3.4 3.6

0

3.02

6.05

9.07

12.1

0

3.02

6.05

9.07

12.1

0 −3.7

−1.85

0

1.85

3.7

−0.5 −3.3 −3.6 −3.3 −2.2

1.2 0.4 −1.2 −0.5 −0.8

1.1 1.3 1.1 0.2

0.9 2 1 0.5

1.7 1.2

S S

1
2
3
4
5

M
in

. c
o−

oc
cu

r.

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
Window size Window size Window size



leave-one-out runs per group. The results are shown for five 
levels of the minimum co-occurrence parameter m, five 
levels of the window size parameter w, and a single criterion 
value of c = .05. The left two columns show the results for 
the younger (YA) and older adults (OA), while the 
rightmost column displays their difference. The figure only 
displays boxes when a giant components comprised of at 
least 90% of all nodes could be recovered, and numbers, 
when the statistical test yielded significance at the level of 
.05. 

As can be seen from the figure, the networks and their 
differences across groups are markedly influenced by the 
choice of minimum co-occurrence, but not window size. 
Specifically, the analysis of all data, including pairs of 
words that only co-occurred once, resulted in about 20% 
larger networks for the older adults than for the younger 
adults. Responsible for this pattern is that, consistent with 
more unique productions for older adults, the older adults 
frequency distribution of productions has a longer tail of 
highly infrequent items. Under most circumstances, such 
infrequent items will likely form unique pairs with the 
words they are paired with. As it is impossible to discern 
whether such pairings are the result of a systematic 
association between the words or mere chance, we followed 
Goñi et al. (2011) in disregarded co-occurrences that 
occurred no more than once (m ≥ 2).  

Evaluating the networks for m ≥ 2 revealed a very clear 
pattern: The networks of younger adults exhibit more 
clustering, mostly shorter average path lengths and mostly 
larger small-world-ness indices. This suggests that the 
structure of the younger adults mental lexicon resembles 
more closely a small world structure than that of older 
adults.    

Discussion 
To our knowledge our investigation represents the first 

comprehensive comparison of younger and older adults 
mental lexica. Consistent with previous research (Ramscar 
et al., 2014), we have shown that relative to younger adults, 
older adults produce more unique words in the verbal 
fluency task, suggesting a larger underlying mental lexicon. 
Critically, we have also shown that relative to the mental 
lexicon of younger adults, the mental lexicon of older adults 
exhibits a less small-world-like structure, implying less 
clustering. Based on previous findings that associate 
network clustering with processing speed (e.g., 
Nematzadeh, Ferrara, Flammini, & Ahn, 2014), this result 
suggests that the structure of the mental lexicon of older 
adults might contribute to the apparent cognitive decline in 
old age. 

The inference of a mental lexicon from memory 
productions is, however, not without caveats. Most 
importantly, one must consider that memory productions are 
the process not only of the underlying network, but also a 
search process operating on the network (Jones, Hills, & 
Todd, 2015; Raaijmakers & Shiffrin, 1981). This means that 
one cannot easily attribute differences in inferred networks 

to the underlying structure. This holds in particular as it has 
been proposed that the search process is affected by age 
(Hills et al., 2013). Future studies should aim to disentangle 
search process and network, possibly by means of 
simulation. Future studies should also aim to corroborate the 
present findings by extending the analysis of mental 
networks to other methods (e.g., similarity ratings) and 
content (e.g., other natural categories). 
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