

Mouse-tracking:

A practical guide to implementation and analysis

Pascal J. Kieslicha, Felix Henningera, b, Dirk U. Wulff c, d,

Jonas M. B. Haslbecke & Michael Schulte-Mecklenbeckd, f

University of Mannheim, Germanya,

University of Koblenz-Landau, Germanyb,

University of Basel, Switzerland c,

Max Planck Institute for Human Development, Berlin, Germany d,

University of Amsterdam, Netherlandse,

University of Bern, Switzerlandf

This chapter will be published as: Kieslich, P. J., Henninger, F., Wulff, D. U., Haslbeck, J. M. B., &

Schulte-Mecklenbeck, M. (in press). Mouse-tracking: A practical guide to implementation and

analysis. In M. Schulte-Mecklenbeck, A. Kühberger, & J. G. Johnson (Eds.), A Handbook of Process

Tracing Methods. New York, NY: Routledge.

Correspondence should be addressed to: Pascal J. Kieslich, Experimental Psychology Lab, School

of Social Sciences, University of Mannheim, L13, 17, 68161 Mannheim, Germany, E-Mail:

kieslich@psychologie.uni-mannheim.de.

This work was supported by the University of Mannheim’s Graduate School of Economic and Social

Sciences funded by the German Research Foundation.

mailto:kieslich@psychologie.uni-mannheim.de

2 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Mouse-tracking: A practical guide to implementation and analysis

The motivation behind process tracing is to go beyond the mere observation of a choice as

the behavioral outcome and more directly observe the psychological process by collecting addi-

tional variables. A central unobserved quantity in choice tasks is the degree to which each alter-

native received consideration during the choice process, and how commitment to and conflict be-

tween options developed over time. Mouse-tracking is based on the assumption that motor move-

ments in a given time interval contain a signal of the cognitive processes during that period

(Spivey & Dale, 2006). Specifically, it is assumed that the direction of movement toward or away

from alternatives reflects their relative attraction at a given time point during the decision process.

To gain access to this information, mouse-tracking records hand movements indirectly by sam-

pling the cursor position of a computer mouse with a high frequency while participants decide

between (and move toward) options presented at different locations on the computer screen.

Mouse-tracking is an increasingly popular process tracing technique that has been applied to a

wide range of questions throughout many fields of psychology (see Chapters 9-10; see also Free-

man, Dale, & Farmer, 2011; Stillman, Shen, & Ferguson, 2018).

This chapter provides an introduction to the collection, analysis and visualization of mouse-

tracking data using free, open-source software. We show how to create mouse-tracking experi-

ments using the graphical experiment builder OpenSesame (Mathôt, Schreij, & Theeuwes, 2012)

in combination with the mousetrap plugin (Kieslich & Henninger, 2017). Analysis and visualiza-

tion rely on the mousetrap package (Kieslich, Wulff, Henninger, Haslbeck, & Schulte-Mecklen-

beck, 2018) for the statistical programming language R (R Core Team, 2016).1

To illustrate the method and its implementation in mousetrap, we replicate a mouse-track-

ing experiment by Dale, Kehoe, and Spivey (2007). In this study, participants classified exemplars

(animals) into one of two categories (e.g., mammal or bird) by clicking on the corresponding but-

tons located at the top-left and top-right of the screen. The independent variable was the typical-

ity of each exemplar for its category. The experiment included typical exemplars (e.g., dog for

mammal) as well as atypical ones that shared features both with the correct and the competing

1 Note that other options for creating mouse-tracking experiments and analyzing mouse-tracking data are availa-

ble (e.g., MouseTracker, cf., Freeman & Ambady, 2010) and a discussion of the different software packages is pro-

vided elsewhere (Kieslich & Henninger, 2017; Kieslich et al., 2018).

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 3

category (e.g., a bat, sharing both features with the correct category mammal and the incorrect

category bird). Dale et al. (2007) hypothesized that for atypical exemplars, both response options

would receive some degree of activation, whereas for the typical exemplars, activation would

largely be limited to the correct category. Consequently, for atypical exemplars, the incorrect cat-

egory should exert a stronger attraction, and mouse movements should deviate more in its direc-

tion even if participants finally choose the correct option.2

Creating mouse-tracking experiments

In this section we demonstrate how a mouse-tracking experiment can be created in

OpenSesame (Mathôt et al., 2012). OpenSesame is a free, open-source software for creating ex-

periments via a graphical user interface which additionally allows for full customization of studies

using Python code.3 To simplify the creation of mouse-tracking experiments inside this frame-

work, we developed the mousetrap plugin (Kieslich & Henninger, 2017) for OpenSesame. Instal-

lation instructions and additional documentation for the plugin are available in its GitHub repos-

itory at https://github.com/pascalkieslich/mousetrap-os.

Creating an experiment

The first step is to start OpenSesame and create a new experiment by clicking on File/New

and selecting the default template. Experiments in OpenSesame are assembled from a set of items,

for example, a sketchpad item for presenting graphical content on the screen, a keyboard_response

item for collecting key presses, and a logger item for writing data into log files. Figure 1 shows the

OpenSesame interface with the item toolbar on the left-hand side. To its right, the overview area

represents the study’s structure, in that the items therein are run sequentially from top to bottom.

An experiment is built by dragging and dropping items from the toolbar into the overview area.

Sequences can be used to run a number of items in succession. In addition, loop items can be used

to repeatedly run sequences with some degree of variation, for example, trials with varying stimuli

(Figure 1, right panel).

2 The data for this replication were collected by Kieslich and Henninger (2017); the corresponding material, data,

analyses, and results are available at https://github.com/pascalkieslich/mousetrap-resources.
3 OpenSesame can be obtained free of charge from http://osdoc.cogsci.nl/, where a general introduction to the

program and detailed documentation are also available.

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-os
http://osdoc.cogsci.nl/

4 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Figure 1. User interface of OpenSesame, showing the final state of the tutorial experiment. In the left-

most panel, the item toolbar contains the available items, including the mousetrap plugin items visible

toward the bottom. The overview area represents the study’s structure. The right panel shows the user

interface of the stimulus loop containing four exemplary stimuli.

Setting up the screen.

Mouse-tracking experiments are typically run in fullscreen mode. Therefore, before adding

content to a new experiment, the screen resolution should be adjusted to match that of the com-

puters used for data collection. This is done in the overall experiment settings, which are accessi-

ble by clicking on the topmost item in the study overview area (“example_experiment” in

Figure 1).

Creating the study structure.

The first item in the experiment provides the instructions. For this, we use a form_text_dis-

play item that presents text and a button to continue the study. It can be added to the study by

dragging it from the item toolbar into the overview area (cf., Figure 1).

In the central part of our study, participants will make categorization decisions for different

animal exemplars and pairs of response categories. To accommodate this recurring structure, we

include a loop item that varies the information presented on each iteration. In the loop options,

the stimulus material is represented as a table where rows reflect the different stimuli and columns

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 5

contain the variables that differ for each stimulus (Figure 1, right panel). In our case, the vital

pieces of information are the name of the exemplar and the response categories, which are con-

tained in the columns Exemplar, CategoryLeft and CategoryRight. The additional columns specify

the correct response and typicality of each combination; though not presented to participants,

they are stored in the dataset and facilitate later analysis. Using the default settings shown in Fig-

ure 1, the order of stimuli is randomized, and each stimulus is presented once.

Nested inside the loop, a sequence item is used to build each trial. It combines several screen

pages as well as the collection of responses and logging of the stimulus and response information.

Building a mouse-tracking screen.

The central part of a mouse-tracking experiment is the stimulus display that presents the

name of the exemplar and the two response buttons (located in the upper screen corners). We

create this display by placing a sketchpad item into the trial sequence. In our example, it is named

“present_stimulus” (Figure 2).4 The content of the sketchpad item is added using the visual editor.

The available types of elements for creating content are shown in the toolbar to the left of the

preview. After selecting an element type, the contents can be drawn inside the preview (to move

or edit them afterwards they can be selected using the topmost option in the toolbar). In our ex-

ample, rectangles (rect elements) of equal size represent the response buttons, placed in the top

left and right screen corners. Button labels are added in the center of each button using textline

elements. An additional textline element is used to present the name of the to-be-categorized ex-

emplar in the lower part of the screen. By default, the inserted text is presented verbatim. How-

ever, one can easily vary content across trials by replacing static text with the appropriate variable

names in square brackets (i.e., “[CategoryLeft]” and “[CategoryRight]” for the button labels and

“[Exemplar]” for the exemplar name). In every iteration of the loop, OpenSesame will replace the

variable name with the variable’s current value. To make sure that the button borders are identi-

fiable in the subsequent mousetrap_response item (cf., next section), we must furthermore label

the two rect elements using the Name field (cf., Figure 2 top row). Each button border is labeled

using the corresponding variable name (“[CategoryLeft]” and “[CategoryRight]”).

4 The additional screens that are presented beforehand (“present_categories” and “present_start”) will be described

in the section Design considerations.

6 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Figure 2. Sketchpad item used to create the main stimulus display. The exemplar is displayed using a

textline element that contains the name of the corresponding variable from the stimulus loop (cf., Fig-

ure 1). The two button borders are created using rect elements. Each button border is labeled using the

Name field (see top row) and as label the corresponding values from the stimuli loop are used. The

button labels are displayed using textline elements that are placed in the center of each button.

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 7

Figure 3. Settings of the mousetrap_response item.

Tracking mouse movements.

After creating the stimulus presentation, we specify the collection of mouse-tracking data

and button clicks using the mousetrap_response item, which is inserted directly after the sketchpad

item and called “get_response”.5 To start recording cursor positions immediately following stim-

ulus presentation, the duration of the sketchpad is set to 0.

The mousetrap_response item records the cursor position at a constant sampling rate (10 ms

by default) until the participant clicks on one of the buttons. To register responses, the corre-

sponding buttons need to be defined (Figure 3, upper part): first, the number of buttons is speci-

fied. Then, the name of the sketchpad that presents the buttons is entered (“present_stimulus”).

5 The mousetrap plugin includes two items for tracking mouse movements. As an alternative to the mousetrap_re-

sponse item, a mousetrap_form item combines stimulus presentation and response collection; its contents are de-

fined using a basic syntax instead of a visual editor. More information is provided in Kieslich and Henninger (2017).

8 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Finally, the buttons are specified via the labels of the button borders used on the sketchpad (“[Cat-

egoryLeft]” and “[CategoryRight]”). As a result, if the participant selects the left button, the value

of the variable CategoryLeft is recorded as their response.

The mousetrap_response item also provides additional options (cf., lower part of Figure 3).

For example, if the name of the correct button is specified, OpenSesame will automatically create

a variable correct that is set to 1 or 0 for correct and incorrect answers, respectively (this is useful

for analysis, as well as for providing feedback during the study). Additional design options are

discussed in the section Design considerations.

Storing data.

As the final part of the trial sequence, a logger item writes the data from the current trial

into a log file. This includes variables pertaining to the study as a whole (e.g., the subject_nr), the

current values of all variables in the stimuli loop (cf., Figure 1) and the response variables.

OpenSesame stores participants’ responses in two places – global variables (response, re-

sponse_time etc.) that always store the last recorded response and response time in the experiment,

and item-specific variables named after the item that collected the response (e.g., response_get_re-

sponse in the current example). The recorded mouse positions and associated timestamps are

stored in item-specific variables only, in order to save memory (xpos_get_response, ypos_get_re-

sponse and timestamps_get_response).

Design considerations

When setting up mouse-tracking experiments, researchers are faced with a number of de-

sign choices. These include decisions about the starting procedure, the cursor speed and acceler-

ation settings, and the response mode (click or mouse-over). Each of these choices aims to ensure

that all cognitive processes relevant to the decision take place while the tracking is active (which

is, in many cases, the period between the click on a start button and the selection of one of the

response options), so that the process of interest is captured in the trajectories. In the remainder

of this section, we discuss available options for a number of important design choices, and their

potential impact on the recorded mouse trajectories (see also Fischer & Hartmann, 2014; Hehman,

Stolier, & Freeman, 2015; Kieslich & Henninger, 2017; Scherbaum & Kieslich, 2018, for additional

discussions about design choices).

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 9

Start button.

Virtually all mouse-tracking experiments try to enforce a comparable start position of the

cursor across trials, thereby ensuring that the cursor is centered horizontally and approximately

equidistant to all response options at the beginning of each trial. To achieve this, another screen

with a start button can be added prior to the display of the task stimulus. The button ensures that

participants have to return to a common area before subsequently initiating mouse movements

for a new choice. In the current experiment, this is implemented using a sketchpad called “pre-

sent_start” combined with a mousetrap_response item called “get_start_click” (cf., Figure 1). As be-

fore, the screen content is assembled in the visual editor and a start button is placed in the lower

center of the screen (and labeled “Start”). The name of the start button is entered in the options

of the mousetrap_response item as the single possible response. As mouse-tracking data prior to

the stimulus presentation are not of interest, the option save mouse-tracking data can be un-

checked for the “get_start_click” item. While the start button ensures that the cursor position at

tracking onset is comparable across trials, it does not guarantee that it is identical. If this is de-

sired, one can select “Reset mouse position when tracking starts” and specify coordinates in the

“get_response” item (cf., Figure 3).

Information presentation.

Another key challenge in designing mouse-tracking studies is the temporal order in which

task-relevant information is presented to the participant. On the one hand, the amount of infor-

mation presented after the onset of tracking should be minimized to ensure that the collected

mouse-tracking data reflects the decision processes. On the other hand, the decision-critical in-

formation needs to be withheld until tracking begins, to prevent participants from making their

decision beforehand. In the current example, these considerations are accommodated by present-

ing the information about the two response categories for 2000 ms prior to tracking onset, but

presenting the to-be-categorized exemplar only after the click on the start button (following the

original procedure of Dale et al., 2007). We implemented this procedure by including another

sketchpad item called “present_categories” at the beginning of the trial that presents only the two

response categories, before the start button is made available to participants (cf., Figure 1).

10 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Counterbalancing.

Another design factor concerns the assignment of response options to the button positions

on the screen. Specifically, in the current study we would like to ensure that the correct answer is

not always presented on the same side. One solution for this is counterbalancing the position of

the correct answer between stimuli, while keeping their position fixed for all participants (cf., Fig-

ure 1). Ideally, however, the position of both response options is drawn anew for each participant

and stimulus (this can be achieved in OpenSesame through the advanced randomization operation

shuffle horizontal).

Starting procedure.

For mouse-tracking to reflect the cognitive processes underlying the choice, movement

must occur while the cognitive process is ongoing. It has been shown that the starting procedure

has a considerable influence on the obtained trajectories (Scherbaum & Kieslich, 2018).

Many mouse-tracking studies have used a so-called static starting procedure, in which the

stimulus is shown immediately after participants have clicked on the start button and without any

specific measures taken to ensure movement during processing (our tutorial experiment following

Dale et al., 2007, is an example for such a setup). While many mouse-tracking studies that use a

static starting procedure find theoretically relevant effects in mouse trajectories, this procedure

does not exclude the possibility that (in some trials) decision-relevant processes take place before

the mouse movement is initiated and therefore are not captured by mouse trajectories.

To ensure that the cognitive processes under investigation do not take place before mouse

movement initialization, some studies have modified the starting procedure. One option is the

static starting procedure with delay, in which a brief lag of, for example, 500 ms, is inserted be-

tween clicking the start button and stimulus presentation. Previous studies reported that this of-

ten successfully led participants to initialize movement before the stimulus appeared (e.g., Spivey,

Grosjean, & Knoblich, 2005). Other studies employ a static starting procedure with immediate

stimulus presentation, but explicitly instruct participants to initiate their mouse movement within

a certain time limit and display a warning to participants after the trial if the initiation time exceeds

the threshold. The exact time limit depends on the task (a typical value is 400 ms; see Hehman et

al., 2015, p. 388–389, for a discussion).

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 11

A more rigorous option, however, is to implement a dynamic starting procedure that presents

the stimulus only after participants have moved the mouse upwards for a minimum distance (e.g.,

Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010). The dynamic procedure forces partici-

pants to initiate their movement in order to receive the critical information needed to make the

choice. It can be implemented by placing an invisible horizontal boundary slightly above the start

button that triggers the presentation of the stimulus once it is crossed (cf., Frisch, Dshemuchadse,

Görner, Goschke, & Scherbaum, 2015). This procedure has been shown to lead to more consistent

movements and larger effects in within-trial temporal analyses (Scherbaum & Kieslich, 2018).6

Mouse sensitivity.

Another design choice is the computer’s mouse sensitivity, in particular the cursor speed

and acceleration. One option is to leave these settings to the operating system defaults (under

Windows 7 and 10, medium speed with acceleration). However, it is often preferable to reduce

mouse speed and switch off mouse acceleration (Fischer & Hartmann, 2014). This is particularly

relevant when using a dynamic starting procedure to ensure that participants can read the dynam-

ically presented stimulus information while continuously moving upwards. The mouse sensitivity

settings cannot be adjusted directly within OpenSesame, but need to be set in the computer’s sys-

tem preferences.

Response mode.

The two main response modes in mouse-tracking studies are clicking on and moving over

the response buttons. In the mousetrap plugin, users can switch between the two response modes

by checking or unchecking the option Click required to indicate response, which is enabled by de-

fault (cf., Figure 3).

Data collection and testing.

After creating the experiment, it can be run from within OpenSesame for testing or using

OpenSesame Run for data collection in the laboratory (see Kieslich & Henninger, 2017, for more

information on running mouse-tracking experiments). Mouse-tracking studies also usually assess

the handedness of participants and the hand participants use for moving the mouse (with some

authors recommending only to include right-handed participants, cf., Hehman et al., 2015).

6 An example experiment implementing this procedure can be found at https://github.com/pascalkieslich/mouse-

trap-os#examples.

https://github.com/pascalkieslich/mousetrap-os#examples
https://github.com/pascalkieslich/mousetrap-os#examples

12 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Analyzing mouse-tracking data

We will now demonstrate the typical steps of a basic mouse-tracking analysis using the data

from the replication experiment described above (Kieslich & Henninger, 2017). For this analysis,

we will use the mousetrap package (Kieslich et al., 2018) in the statistical programming language

R (R Core Team, 2016), which facilitates preprocessing, analysis and visualization of mouse-track-

ing data.7 Once installed, mousetrap functions can then be made available within an R session by

loading the package via:

library(mousetrap)

A detailed overview of its functionality is provided online at

http://pascalkieslich.github.io/mousetrap/ or within R using the command:

package?mousetrap

In the following, we discuss the most important analysis steps, starting with data import

and preprocessing operations, followed by the computation and analysis of common indices, tem-

poral analyses, and visualizations.

Import

First, the raw data need to be read into R’s workspace. OpenSesame stores the data for each

participant in a separate csv file. To load all csv files from a directory and combine them into a

single dataset, we use the read_opensesame function from the readbulk package (Kieslich & Hen-

ninger, 2016). The following command assumes that all data files can be found in the folder

“raw_data” in the working directory and stores the imported data in the dataset “KH2017_raw”

(this dataset is available once the mousetrap package has been loaded, so no raw data have to be

imported to follow this tutorial):

library(readbulk)

KH2017_raw <- read_opensesame("raw_data")

7 R is open-source and freely available from https://www.r-project.org/. We recommend using R in combination

with RStudio (available from https://www.rstudio.com/), which greatly facilitates code development and analysis

by providing many useful features such as code highlighting, debugging, and tools for data inspection.

https://www.rstudio.com/
http://pascalkieslich.github.io/mousetrap/
https://www.r-project.org/

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 13

Next, the data need to be transformed into a mousetrap data object to perform analyses using

the mousetrap R package.8 This results in a mousetrap data object (called “mt_data” in the current

analysis), which is described in detail in Information box 1:

mt_data <- mt_import_mousetrap(KH2017_raw)

Using this two-step procedure of reading and importing the mouse-tracking data, the

mousetrap R package can also be used for data collected in other software. An example for reading

and importing raw data collected with MouseTracker (Freeman & Ambady, 2010) is given in the

documentation of the read_mt function, which can be accessed by entering:

?read_mt

Preprocessing

Spatial transformations.

In a typical two-alternative choice design (as implemented in the example experiment, see

Figure 2), trajectories end either at the left or the right response option. As the overall spatial

direction is irrelevant for most analyses (as opposed to the substantive meaning of the response

button, which varies across trials if the position of alternatives is counterbalanced), all trajectories

are remapped so that they end on the same side. By default, mousetrap maps the trajectories to

the left, implying that trajectories that end on the right-hand side are flipped from right to left:

mt_data <- mt_remap_symmetric(mt_data)

Similarly, differences in the trajectories’ starting points are often not of substantive inter-

est. If the cursor’s starting position was not reset to exact coordinates during the experiment (as

is the case for the example data set), it can be aligned by shifting the trajectories in preprocessing:

mt_data <- mt_align_start(mt_data, start=c(0,0))

8 In case that only one mousetrap item in the experiment collected mouse-tracking data, the mt_import_mousetrap

function automatically detects the mouse-tracking variables in the raw data. If more than one item stored mouse-

tracking data, the variable names have to be set explicitly once using the xpos_label, ypos_label, and timestamps_la-

bel arguments when importing data via the mt_import_mousetrap function.

14 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Information box 1. Working with mousetrap data objects

The mousetrap R package represents mouse-tracking data in a specialized data structure,

a mousetrap data object. This allows the package to store and process mouse trajectories

efficiently, and to link them to other information collected during the study. All mousetrap

analysis functions use mousetrap data objects as input; therefore, the collected data must

be imported before processing and analysis. A newly imported mousetrap data object con-

sists of a data.frame called data containing the trial information (without mouse trajecto-

ries) and an array called trajectories containing the recorded mouse-tracking data.

The mousetrap data object can hold multiple sets of trajectories (e.g., mt_time_normalize

adds the time-normalized trajectories as tn_trajectories). In subsequent analyses, the user

can specify via the use argument whether an analysis (or visualization) should be per-

formed based on the raw trajectories (use="trajectories", which is used by default in

most functions) or another trajectory array (e.g., use="tn_trajectories"). Other

functions add new data.frames to the mousetrap object (e.g., mt_measures adds a data.frame

called measures that contains trial-level indices).

The mousetrap package is designed for processing and visualizing trajectories and the

computation of indices. For statistical analyses of the computed indices, they can be

merged with the other trial data via:

results <- merge(mt_data$data, mt_data$measures, by="mt_id")

Similarly, mouse trajectories can be transformed into a format required for the statistical

analysis using the mt_export_long or mt_export_wide functions. The resulting data can then

be analyzed outside of the mousetrap package using any standard analysis method.

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 15

Resampling.

The cursor position is typically recorded at a constant sampling rate. The mousetrap plugin

in OpenSesame records the mouse position every 10 ms by default (corresponding to a sampling

rate of 100 Hz). Due to variation in trial durations, the number of recorded cursor positions may

vary considerably across trials. To be able to aggregate trajectories or compare them statistically,

one often requires an equal number of coordinates for all trajectories. To achieve this, studies

commonly apply time-normalization:

mt_data <- mt_time_normalize(mt_data)

Time-normalization interpolates trajectories so that each is represented by the same num-

ber of positions (101 by default, following Spivey et al., 2005) separated by a (within-trial) constant

time interval. Mousetrap stores the time-normalized data as a new set of trajectories within the

mousetrap data object (see Information box 1).

Another possibility is to interpolate trajectories so that each is represented by the same

number of spatially equidistant positions (using mt_spatialize). This processing step facilitates the

comparison of trajectory shapes and is instrumental in type-based analyses of trajectories (cf.,

Chapter 9).

Data inspection and filtering.

As a final step prior to analysis, trials are typically screened and filtered based on one or

more criteria. If choices can be graded as correct, studies often exclude trials with incorrect re-

sponses to ensure a consistent interpretation of curvature across all trials (i.e., that increased cur-

vature always reflects attraction towards the distractor category). The mt_subset function can be

used to select only correctly answered trials for further analysis (or to apply other filters):

mt_data <- mt_subset(mt_data, correct==1)

An additional concern in mouse-tracking analysis is whether the data contain movements

that are presumably not related to the preference development but to other processes, such as

information acquisition or slips of the hand. Information acquisition might, for example, be re-

flected by directed movements towards a point where information was presented on the screen.

Slips of the hand, resulting, for example, from participants placing the mouse device somewhere

else in order to avoid a physical obstacle (or in order to more comfortably move it), would lead to

erratic movements and result in movements untypical for this context, for example, comparatively

large amounts of up and down movements. The challenge is finding precise criteria to differentiate

16 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

between relevant and irrelevant movements. One possibility is an exploratory approach, for ex-

ample, visually inspecting all trials by plotting them either in a single figure (using mt_plot or

mt_heatmap, see also top panel of Figure 5 in the section Trajectory types) or separately (using

mt_plot_per_trajectory). If to-be-excluded movement patterns have been specified, separate plots

per trajectory might also be provided to human raters who can code whether these are present in

a trial. Another possibility is to exclude trials based on a numeric criterion, such as trials exceeding

an absolute or relative reaction time or trials containing several flips along the y-axis (which prob-

ably indicate large amounts of task-irrelevant tracking data). A more detailed discussion is pro-

vided in Kieslich et al. (2018). Especially if exclusion criteria were not defined a priori, the impact

of the criterion applied should be reported; additional pre-registered studies might be conducted

to validate the chosen criteria and to replicate the results under strictly confirmatory conditions.

Analysis

To analyze effects of the experimental manipulation, a common first step is the visual in-

spection of aggregate time-normalized mouse trajectories. Mousetrap provides the mt_plot_aggre-

gate function, which, if used as below, aggregates the time-normalized trajectories for each con-

dition first within and then across participants and plots the result:

mt_plot_aggregate(mt_data, use="tn_trajectories",

 x="xpos", y="ypos", color="Condition",

 subject_id="subject_nr")

As can be seen in Figure 4, the aggregate mouse trajectory in the current study is more

curved towards the non-chosen option for atypical than for typical exemplars – consistent with

the hypothesis by Dale et al. (2007). Whether the aggregate trajectories are an adequate summary

of the trial-level trajectories is discussed in the section Trajectory types.

A wide range of analysis methods are available for mouse-tracking data (for overviews, see

Hehman et al., 2015; Kieslich et al., 2018). They can roughly be categorized into analyses that

focus on the temporal development of a certain characteristic over the course of a trial (such as x-

position, velocity or movement direction, see section Temporal analyses) and those that summa-

rize a particular characteristic of each trajectory by computing one index value per trial. Many

common indices can be computed using the mt_measures function:

mt_data <- mt_measures(mt_data)

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 17

Figure 4. Aggregate time-normalized trajectories per typicality condition. Trajectories were first aligned

to a common start position, remapped to the left, and finally aggregated first within and then across

participants. Boxes representing the response buttons were added for clarity.

An overview of the different indices is given in Table 1 and further information about work-

ing with the computed indices is provided in Information box 1. Different types of indices and

their interpretation will be discussed in the following.

Curvature.

The curvature of the response trajectory is used to assess the degree of its attraction to-

wards the non-chosen option. It is assumed to be driven by the difference in activation between

the non-chosen and the chosen option – in that a smaller difference in activations leads to a

stronger curvature (Spivey, Dale, Knoblich, & Grosjean, 2010). A number of different indices have

been suggested to quantify curvature (cf., Table 1). Their exact computation differs, but they are

often highly correlated in practice (see Kieslich et al., 2018; Stillman et al., 2018).

0

250

500

750

-500 0 500

x coordinate (px)

y
co

o
rd

in
at

e
 (

p
x
)

Condition

Atypical

Typical

18 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Table 1. Selected mouse-tracking measures, their variable name (in brackets, as used by the

mt_measures function of the mousetrap R package) and definition.

Type Measure Definition

Curvature Maximum absolute deviation

(MAD)

Signed maximum absolute deviation of

observed trajectory from direct path

 Maximum deviation above

(MD_above)

Maximum deviation above direct path

 Average deviation (AD) Average deviation of observed trajectory

from direct path

 Area under curve (AUC) Geometric area between observed trajectory

and direct path

Complexity x-flips (xpos_flips) Number of directional changes along x-axis

 x-reversals (xpos_reversals) Number of crossings of y-axis

 Sample entropy

(sample_entropy)

Degree of unpredictability of movement

along x-axis

Time Response time (RT) Time until response is given

 Initiation time

(initiation_time)

Time until first movement is initiated

 Idle time (idle_time) Total time without movement across trial

Derivatives Total distance (total_dist) Euclidean distance traveled by trajectory

 Max velocity (vel_max) Maximum movement velocity

 Max acceleration (acc_max) Maximum movement acceleration

Note: The direct path refers to the straight line connecting the start and end point of the observed trajectory.

Deviations/areas above the direct path receive a positive sign and deviations/areas below receive a negative sign.

For all derivative measures, it is assumed that movements across both x and y dimensions are taken into account

(derivatives have to be calculated using mt_calculate_derivatives before calling mt_measures). Sample entropy is

computed using mt_sample_entropy (based on the time-normalized x-positions by default).

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 19

In the following, we focus on a frequently used index known as the (signed) maximum abso-

lute deviation (MAD). To compute the MAD, imagine an idealized, direct line between the start and

end point of the trajectory, and that lines perpendicular to this idealized line are drawn to connect

it with every point on the original trajectory. The value of the MAD is defined as the length of the

longest of these lines. The sign of the MAD is positive if the deviation is largest above the direct

path (in the direction of the non-chosen alternative) and negative if the point of strongest devia-

tion occurs below.

To assess whether the MAD differs between experimental conditions, mouse-tracking stud-

ies often aggregate the MAD values across trials per participant and condition, and then compare

the aggregate MAD values between conditions using a paired t-test.9 These operations can be per-

formed using mt_aggregate_per_subject and R’s standard t.test function:

agg_mad <- mt_aggregate_per_subject(mt_data,

 use_variables="MAD", use2_variables="Condition",

 subject_id="subject_nr")

t.test(MAD~Condition, data=agg_mad, paired=TRUE)

In line with the hypothesis by Dale et al. (2007), the MAD values indicate larger curvature in

the atypical (M = 343.8 px, SD = 218.6 px) than in the typical condition (M = 172.2 px, SD = 110.8

px), t(59) = 6.73, p < .001. A replication of the original analyses by Dale et al. using the current

dataset can be found online at https://github.com/pascalkieslich/mousetrap-resources.

Trajectory types.

While aggregate response trajectories (cf., Figure 4) and curvature indices provide a first

indication of the average curvature of the trajectories in each condition, they do not necessarily

represent the shape of the individual trajectories well. Specifically, an aggregate curved trajectory

might result from different types of trajectories, for example, a mixture of straight lines and tri-

angular “change of mind” trajectories which first head directly to the non-chosen and then to the

chosen option (cf., Chapter 9). If this is the case, the average trajectory might not be representative

9 Analyses can also be performed on the trial level using mixed-effects models that can account for individual dif-

ferences between participants as well as trial-level predictors (see https://github.com/pascalkieslich/mousetrap-

resources).

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources

20 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

of the movement patterns observed in the study, but purely an artefact of aggregation. Under these

circumstances, the shape of the aggregate trajectory would provide only limited (and potentially

misleading) information about the underlying cognitive processes.

Several methods have been suggested to assess the degree of heterogeneity of the individual

trajectories on the trial level. Previous approaches have focused on the distribution of trial-level

curvature indices (such as area under curve or MAD, cf., Table 1) and tested them for indications

of bimodality. The assumption behind these approaches is that gradually curved trajectories on

the trial level should result in a unimodal distribution, while a combination of straight and ex-

tremely curved trajectories should result in a bimodal distribution (Hehman et al., 2015). The bi-

modality of the distribution is frequently assessed by computing the bimodality coefficient (BC;

Pfister, Schwarz, Janczyk, Dale, & Freeman, 2013) which is interpreted as bimodal for values > .555

(Freeman & Ambady, 2010). Alternative methods for identifying bimodality have been discussed,

especially the Hartigan’s dip statistic (Freeman & Dale, 2013). Both methods are implemented in

the mt_check_bimodality function.

Instead of attempting to detect mixtures of distinct trajectory types based on the distribu-

tion of curvature indices (which condense each trajectory to a single numeric value), more recent

analysis methods take into account the complete shape of each trajectory by using every point of

the trajectory. The shape of individual trajectories can be assessed visually by plotting raw or

smoothed heatmaps with the mt_heatmap function and by comparing heatmaps between condi-

tions using the mt_diffmap function (code examples are provided at https://github.com/pas-

calkieslich/mousetrap-resources).

As can be seen in Figure 5 (middle panel), there appear to be different types of trajectories

on the trial level in the current study, with a large proportion of straight and mildly curved trajec-

tories and a small proportion of extremely curved, “change of mind” trajectories. More im-

portantly, a difference heatmap reveals that the relative occurrence of these types differs between

conditions, with a higher proportion of extremely curved trajectories in the atypical condition (or-

ange areas in Figure 5, bottom panel). Analyses that go beyond a visual inspection to identify tra-

jectory types and instead use a clustering approach based on spatial similarity (or the assignment

of trajectories to different prototypes) are also implemented in the mousetrap R package and de-

scribed in Chapter 9 (see also Wulff, Haslbeck, & Schulte-Mecklenbeck, 2018).

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 21

Figure 5. Heatmap of the (remapped) individual trajectories (top panel), smoothed heatmap (middle

panel) and difference of smoothed heatmaps between conditions (bottom panel), where blue indicates

higher density in the typical and orange higher density in the atypical condition (white indicates com-

parable density).

Individual trajectories

Smoothed heatmap

Effect of condition

22 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

The different trajectory types and their frequency have also been used to distinguish be-

tween different theoretical models (see Chapters 9-10 for more information). When used to this

end, it is important to keep in mind that the setup of mouse-tracking studies can influence the

shape of individual trajectories (see section Design considerations). In the current study, the occur-

rence of rather “extreme” trajectory types (straight and “change of mind”) may have been caused

by the relatively simplistic setup of the study with a static starting procedure, default mouse sen-

sitivity settings and the use of a click instead of a mouse-over response.

Complexity.

In addition to curvature, mouse-tracking studies have also used the complexity of the move-

ment as an indicator of response competition. If multiple response options simultaneously attract

the cursor, this should result in more complex, less smooth trajectories compared to cases where

only one option exerts an influence (Dale et al., 2007).

In two-alternative tasks, complexity is typically assessed with regard to movements along

the horizontal axis, since this is the dimension that separates the options. The most common

measure of complexity is x-flips, the number of directional changes along the x-axis (Freeman &

Ambady, 2010), which is calculated by the mt_measures function (Table 1). As response competi-

tion might not always lead to directional changes, other mouse-tracking studies have used sample

entropy (Dale et al., 2007; McKinstry, Dale, & Spivey, 2008) which quantifies the degree of unpre-

dictability of movement along the x-axis. Sample entropy can be computed using mt_sample_en-

tropy, which uses time-normalized trajectories by default, following the recommendation that

each trajectory be represented by the same number of positions (Hehman et al., 2015):

mt_data <- mt_sample_entropy(mt_data, use="tn_trajectories")

Koop and Johnson (2013) propose a substantive interpretation of complexity-related

measures in preferential choice tasks, based on the assumption that the x-position at a specific

point during the trial is a proxy for the current absolute preference. They suggest that x-flips re-

flect changes in the momentary valence whereas x-reversals (i.e., the number of times the cursor

crosses the vertical axis at the midpoint between the two options) indicate changes of absolute

preference. Recently, the sequence in which certain areas of interest (one for each choice option)

are visited with the mouse cursor has also been used to identify how often participants changed

their mind during the decision-making process (Szaszi, Palfi, Szollosi, Kieslich, & Aczel, 2018; see

also Travers, Rolison, & Feeney, 2016).

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 23

As with curvature indices, complexity indices can be analyzed either by aggregating values

per participant and condition (using mt_aggregate_per_subject) and comparing the result across

conditions, or on the trial level using mixed-effects models.

Temporal analyses.

Although many studies use it in this sense, mouse-tracking is not limited to the analysis of

aggregate indices that collapse each trajectory to a single value. Analyses of trajectories’ temporal

development can shed light on the time course of response option activations across the trial and,

in particular, how and when different cognitive processes influence the trajectory (Hehman et al.,

2015). In the following, we will briefly illustrate some simple use cases.

Figure 6. Plot of the average time-normalized x-position over time. For each time step, x-positions were

first averaged within participants and condition.

One purpose of temporal analyses is to supplement aggregate analyses of trajectory curva-

ture by showing at which point and for how long aggregate trajectories diverge between condi-

tions. Previous studies (e.g., Dale et al., 2007) have examined this by comparing the horizontal

positions of the time-normalized trajectories at each time step using a series of t-tests between

-600

-400

-200

0

0 25 50 75 100

Normalized time steps

x
 c

o
o

rd
in

at
e
 (

p
x
)

Condition

Atypical

Typical

24 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

conditions (code examples can be found at https://github.com/pascalkieslich/mousetrap-re-

sources). Using this approach reveals that for time steps from 54 to 95 (of 101 steps) the average

x- coordinates differed between conditions (Figure 6). If a theory provides specific predictions with

regard to the temporal development, for example, whether the divergence between conditions

should occur early or late in the decision-making process, this can be used to test them. Note that

the comparison of trajectories between conditions can be problematic if response time differences

between conditions are large, and that temporal analyses can also be conducted based on raw in-

stead of time-normalized trajectories (see also Hehman et al., 2015).

Figure 7. Riverbed plot of the distribution of x-positions across time for time-normalized trajectories

separately for the two experimental conditions. For each time step, the colors indicate the relative fre-

quency with which each bin of x-positions was observed.

As with aggregated trial-level indices, aggregated x-positions may not necessarily represent

the underlying trial level trajectories well. To inspect whether this is the case it is useful to illus-

trate the full distribution of trial-level x-positions across normalized time using the mt_plot_riv-

erbed function (following an approach by Scherbaum et al., 2010). As can be seen in Figure 7, the

aggregate x-positions displayed in Figure 6 are a rather poor representation of the individual tra-

jectories, which vary greatly. Specifically, while the majority of trajectories go directly to the even-

tually chosen option, a substantial number of trajectories first moves to the non-chosen option

(crossing the midline). This means that the data may be better analyzed on the trial level using,

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 25

for instance, mixed-effects models or type-based analyses (Wulff et al., 2018; see also Chapter 9).

Moreover, Figure 7 reveals that in most trials of both conditions the cursor remained in a neutral

position (in many cases it stayed on the start button) for more than half of the trial, a behavior

that is probably related to the use of a static starting condition that did not enforce early move-

ment initiation (cf., Scherbaum & Kieslich, 2018).

In addition to analyzing the temporal development of the cursor position, previous mouse-

tracking studies have also focused on other variables derived from it, especially velocity, acceler-

ation, and movement angle. The analysis of velocity and acceleration has been used to investigate

response activation and competition (Hehman et al., 2015). In mousetrap, velocity and accelera-

tion can be computed using mt_calculate_derivatives which attaches velocity and acceleration val-

ues to each of the recorded cursor positions.10 Subsequent analyses can be performed as sketched

above, using the velocity values instead of x-positions as the dimension of interest.

Finally, an emerging class of analyses has focused on the movement angle, which quantifies

the direction of movement over time indicating, for example, whether participants move towards

or away from a specific response alternative. Previous studies have used movement angles to dis-

entangle when and to which extent different factors influence the movement direction (e.g.,

Dshemuchadse, Scherbaum, & Goschke, 2013; Scherbaum et al., 2010; Sullivan, Hutcherson, Har-

ris, & Rangel, 2015). For details on these approaches, see Scherbaum and Dshemuchadse (2018).

Summary and conclusion

In mouse-tracking studies, participants’ cursor movements are recorded as they choose be-

tween different options represented as buttons on a computer screen. Thereby, mouse-tracking

aims to measure the degree of conflict between the alternatives and the temporal development of

its resolution. While Chapter 9 provides a detailed look at the types of trajectories revealed in this

paradigm, and Chapter 10 provides an introduction to this method and its use in the literature,

this chapter has shown how to construct a mouse-tracking study using the mousetrap plugin for

the graphical experiment builder OpenSesame, and how to analyze the resulting data in the

10 Velocity and acceleration can be calculated for raw trajectories (by default) as well as for time-normalized tra-

jectories. In addition, both can be computed based on the Euclidean distance traveled along the x- and y-dimension

(by default) or for a single dimension only.

26 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

mousetrap R package. We have covered technical issues surrounding the application of this

method, and highlighted design considerations and their influence on the collected data.

The strength of mouse-tracking lies in the ease with which it can be applied. Using only

standard laboratory hardware, cognitive processes can be tracked at high temporal resolution. It

is also a flexible tool that can be adapted to many different tasks, and which is even more powerful

in combination with other process tracing methods (e.g., eye-tracking, cf., Koop & Johnson, 2013;

Quétard et al., 2016). Data collection and processing as described in this chapter are handled en-

tirely by free, open-source software (Kieslich & Henninger, 2017; Kieslich et al., 2018), making

mouse-tracking easily accessible to interested researchers and transparent to those looking to rep-

licate findings or adapt and extend the methods described herein.

As a fairly recent addition to the family of process tracing methods, many aspects of the

method are not yet fully standardized. Therefore, the degrees of freedom with regard to data col-

lection, processing, and analysis are substantial. Where available, we have pointed to the current

state of knowledge regarding best practices, which is bound to grow over time. We advise users of

mouse-tracking to seek convergence between analyses and indices where no standard has been

established so far. In doing so, they should also consider the effects of aggregation by inspecting

the distribution of trajectories and indices on the trial level (cf., Chapter 9). While researchers may

often explore different experimental setups and analyses if they apply mouse-tracking in a new

domain, (additional) pre-registered studies should be conducted to perform strictly confirmatory

hypothesis testing (Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012).

In sum, we have demonstrated the potential mouse-tracking has as a process tracing method

for various areas of decision research. Given the limits of an introductory tutorial, we have only

covered the most frequently used analyses. Similarly, the current chapter has limited itself to the

frequently investigated two-option design, but mouse-tracking can easily be extended to situa-

tions with more than two alternatives (e.g., Koop & Johnson, 2011). Lastly, more sophisticated

analysis methods are being developed to more fully harvest the rich potential of mouse-tracking

data, such as time continuous multiple regression (Scherbaum & Dshemuchadse, 2018), entropy

approaches (Calcagnì, Lombardi, & Sulpizio, 2017), generalized processing tree models (Heck,

Erdfelder, & Kieslich, in press), and decision landscapes (Zgonnikov, Aleni, Piiroinen, O’Hora, &

di Bernardo, 2017). Thus, we are confident that mouse-tracking will continue to offer researchers

novel insights into how decision processes unfold over time.

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 27

Recommended reading list

• https://github.com/pascalkieslich/mousetrap-resources: resources for creating mouse-

tracking experiments and analyzing mouse-tracking data (including the examples from the

current chapter).

• Kieslich and Henninger (2017): an introduction into and validation of the mousetrap plugin

for OpenSesame, which also provides detailed information about the example study used in

the current chapter.

• Kieslich, Wulff, Henninger, Haslbeck, and Schulte-Mecklenbeck (2018): a detailed tutorial

on analyzing hand- and mouse-tracking data using the mousetrap R package.

• Hehman, Stolier, and Freeman (2015): a description of several analytic approaches for

mouse-tracking data.

https://github.com/pascalkieslich/mousetrap-resources

28 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

References

Calcagnì, A., Lombardi, L., & Sulpizio, S. (2017). Analyzing spatial data from mouse tracker meth-

odology: An entropic approach. Behavior Research Methods, 49(6), 2012–2030.

Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of catego-

rizing atypical exemplars. Memory & Cognition, 35(1), 15–28.

Dshemuchadse, M., Scherbaum, S., & Goschke, T. (2013). How decisions emerge: Action dynamics

in intertemporal decision making. Journal of Experimental Psychology: General, 142(1), 93–

100.

Fischer, M. H., & Hartmann, M. (2014). Pushing forward in embodied cognition: May we mouse

the mathematical mind? Frontiers in Psychology, 5, 1315.

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for studying real-time mental pro-

cessing using a computer mouse-tracking method. Behavior Research Methods, 42(1), 226–

241.

Freeman, J. B., & Dale, R. (2013). Assessing bimodality to detect the presence of a dual cognitive

process. Behavior Research Methods, 45(1), 83–97.

Freeman, J. B., Dale, R., & Farmer, T. A. (2011). Hand in motion reveals mind in motion. Frontiers

in Psychology, 2, 59.

Frisch, S., Dshemuchadse, M., Görner, M., Goschke, T., & Scherbaum, S. (2015). Unraveling the

sub-processes of selective attention: Insights from dynamic modeling and continuous be-

havior. Cognitive Processing, 16(4), 377–388.

Heck, D. W., Erdfelder, E., & Kieslich, P. J. (in press). Generalized processing tree models: Jointly

modeling discrete and continuous variables. Psychometrika.

Hehman, E., Stolier, R. M., & Freeman, J. B. (2015). Advanced mouse-tracking analytic techniques

for enhancing psychological science. Group Processes & Intergroup Relations, 18(3), 384–401.

Kieslich, P. J., & Henninger, F. (2016). Readbulk: An R package for reading and combining multiple

data files. Retrieved from https://doi.org/10.5281/zenodo.596649

Kieslich, P. J., & Henninger, F. (2017). Mousetrap: An integrated, open-source mouse-tracking

package. Behavior Research Methods, 49(5), 1652–1667.

MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS 29

Kieslich, P. J., Wulff, D. U., Henninger, F., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2018).

Mouse- and hand-tracking as a window to cognition: A tutorial on implementation, analysis,

and visualization. Manuscript in preparation.

Koop, G. J., & Johnson, J. G. (2011). Response dynamics: A new window on the decision process.

Judgment and Decision Making, 6(8), 750–758.

Koop, G. J., & Johnson, J. G. (2013). The response dynamics of preferential choice. Cognitive Psy-

chology, 67(4), 151–185.

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experi-

ment builder for the social sciences. Behavior Research Methods, 44(2), 314–324.

McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics reveal parallel competition in de-

cision making. Psychological Science, 19(1), 22–24.

Pfister, R., Schwarz, K. A., Janczyk, M., Dale, R., & Freeman, J. B. (2013). Good things peak in pairs:

A note on the bimodality coefficient. Frontiers in Psychology, 4, 700.

Quétard, B., Quinton, J. C., Mermillod, M., Barca, L., Pezzulo, G., Colomb, M., & Izaute, M. (2016).

Differential effects of visual uncertainty and contextual guidance on perceptual decisions:

Evidence from eye and mouse tracking in visual search. Journal of Vision, 16(11), 28.

R Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Scherbaum, S., & Dshemuchadse, M. (2018). Psychometrics based on continuous measures: Ex-

ploiting the dynamics of computer mouse movements with time continuous multiple re-

gression. Manuscript submitted for publication.

Scherbaum, S., Dshemuchadse, M., Fischer, R., & Goschke, T. (2010). How decisions evolve: The

temporal dynamics of action selection. Cognition, 115(3), 407–416.

Scherbaum, S., & Kieslich, P. J. (2018). Stuck at the starting line: How the starting procedure in-

fluences mouse-tracking data. Behavior Research Methods, 50(5), 2097–2110.

Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in

Psychological Science, 15(5), 207–211.

Spivey, M. J., Dale, R., Knoblich, G., & Grosjean, M. (2010). Do curved reaching movements emerge

from competing perceptions? A reply to van der Wel et al. (2009). Journal of Experimental

Psychology: Human Perception and Performance, 36(1), 251–254.

30 MOUSE-TRACKING: IMPLEMENTATION AND ANALYSIS

Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological

competitors. Proceedings of the National Academy of Sciences of the United States of America,

102(29), 10393–10398.

Stillman, P. E., Shen, X., & Ferguson, M. J. (2018). How mouse-tracking can advance social cogni-

tive theory. Trends in Cognitive Sciences, 22(6), 531–543.

Sullivan, N., Hutcherson, C., Harris, A., & Rangel, A. (2015). Dietary self-control is related to the

speed with which attributes of healthfulness and tastiness are processed. Psychological Sci-

ence, 26(2), 122–134.

Szaszi, B., Palfi, B., Szollosi, A., Kieslich, P. J., & Aczel, B. (2018). Thinking dynamics and individ-

ual differences: Mouse-tracking analysis of the denominator neglect task. Judgment and De-

cision Making, 13(1), 23–32.

Travers, E., Rolison, J. J., & Feeney, A. (2016). The time course of conflict on the Cognitive Reflec-

tion Test. Cognition, 150, 109–118.

Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., & Kievit, R. A. (2012). An

agenda for purely confirmatory research. Perspectives on Psychological Science, 7(6), 632–

638.

Wulff, D. U., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2018). Measuring the (dis-) continuous

mind. Manuscript in preparation.

Zgonnikov, A., Aleni, A., Piiroinen, P. T., O’Hora, D., & di Bernardo, M. (2017). Decision land-

scapes: Visualizing mouse-tracking data. Royal Society Open Science, 4(11), 170482.

