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Mouse-tracking: A practical guide to implementation and analysis 

The motivation behind process tracing is to go beyond the mere observation of a choice as 

the behavioral outcome and more directly observe the psychological process by collecting addi-

tional variables. A central unobserved quantity in choice tasks is the degree to which each alter-

native received consideration during the choice process, and how commitment to and conflict be-

tween options developed over time. Mouse-tracking is based on the assumption that motor move-

ments in a given time interval contain a signal of the cognitive processes during that period 

(Spivey & Dale, 2006). Specifically, it is assumed that the direction of movement toward or away 

from alternatives reflects their relative attraction at a given time point during the decision process. 

To gain access to this information, mouse-tracking records hand movements indirectly by sam-

pling the cursor position of a computer mouse with a high frequency while participants decide 

between (and move toward) options presented at different locations on the computer screen. 

Mouse-tracking is an increasingly popular process tracing technique that has been applied to a 

wide range of questions throughout many fields of psychology (see Chapters 9-10; see also Free-

man, Dale, & Farmer, 2011; Stillman, Shen, & Ferguson, 2018). 

This chapter provides an introduction to the collection, analysis and visualization of mouse-

tracking data using free, open-source software. We show how to create mouse-tracking experi-

ments using the graphical experiment builder OpenSesame (Mathôt, Schreij, & Theeuwes, 2012) 

in combination with the mousetrap plugin (Kieslich & Henninger, 2017). Analysis and visualiza-

tion rely on the mousetrap package (Kieslich, Wulff, Henninger, Haslbeck, & Schulte-Mecklen-

beck, 2018) for the statistical programming language R (R Core Team, 2016).1  

To illustrate the method and its implementation in mousetrap, we replicate a mouse-track-

ing experiment by Dale, Kehoe, and Spivey (2007). In this study, participants classified exemplars 

(animals) into one of two categories (e.g., mammal or bird) by clicking on the corresponding but-

tons located at the top-left and top-right of the screen. The independent variable was the typical-

ity of each exemplar for its category. The experiment included typical exemplars (e.g., dog for 

mammal) as well as atypical ones that shared features both with the correct and the competing 

                                                                    

1 Note that other options for creating mouse-tracking experiments and analyzing mouse-tracking data are availa-

ble (e.g., MouseTracker, cf., Freeman & Ambady, 2010) and a discussion of the different software packages is pro-

vided elsewhere (Kieslich & Henninger, 2017; Kieslich et al., 2018). 
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category (e.g., a bat, sharing both features with the correct category mammal and the incorrect 

category bird). Dale et al. (2007) hypothesized that for atypical exemplars, both response options 

would receive some degree of activation, whereas for the typical exemplars, activation would 

largely be limited to the correct category. Consequently, for atypical exemplars, the incorrect cat-

egory should exert a stronger attraction, and mouse movements should deviate more in its direc-

tion even if participants finally choose the correct option.2 

Creating mouse-tracking experiments 

In this section we demonstrate how a mouse-tracking experiment can be created in 

OpenSesame (Mathôt et al., 2012). OpenSesame is a free, open-source software for creating ex-

periments via a graphical user interface which additionally allows for full customization of studies 

using Python code.3 To simplify the creation of mouse-tracking experiments inside this frame-

work, we developed the mousetrap plugin (Kieslich & Henninger, 2017) for OpenSesame. Instal-

lation instructions and additional documentation for the plugin are available in its GitHub repos-

itory at https://github.com/pascalkieslich/mousetrap-os. 

Creating an experiment 

The first step is to start OpenSesame and create a new experiment by clicking on File/New 

and selecting the default template. Experiments in OpenSesame are assembled from a set of items, 

for example, a sketchpad item for presenting graphical content on the screen, a keyboard_response 

item for collecting key presses, and a logger item for writing data into log files. Figure 1 shows the 

OpenSesame interface with the item toolbar on the left-hand side. To its right, the overview area 

represents the study’s structure, in that the items therein are run sequentially from top to bottom. 

An experiment is built by dragging and dropping items from the toolbar into the overview area. 

Sequences can be used to run a number of items in succession. In addition, loop items can be used 

to repeatedly run sequences with some degree of variation, for example, trials with varying stimuli 

(Figure 1, right panel). 

  

                                                                    
2 The data for this replication were collected by Kieslich and Henninger (2017); the corresponding material, data, 

analyses, and results are available at https://github.com/pascalkieslich/mousetrap-resources. 
3 OpenSesame can be obtained free of charge from http://osdoc.cogsci.nl/, where a general introduction to the 

program and detailed documentation are also available. 

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-os
http://osdoc.cogsci.nl/
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Figure 1. User interface of OpenSesame, showing the final state of the tutorial experiment. In the left-

most panel, the item toolbar contains the available items, including the mousetrap plugin items visible 

toward the bottom. The overview area represents the study’s structure. The right panel shows the user 

interface of the stimulus loop containing four exemplary stimuli. 

 

Setting up the screen. 

Mouse-tracking experiments are typically run in fullscreen mode. Therefore, before adding 

content to a new experiment, the screen resolution should be adjusted to match that of the com-

puters used for data collection. This is done in the overall experiment settings, which are accessi-

ble by clicking on the topmost item in the study overview area (“example_experiment” in  

Figure 1). 

Creating the study structure. 

The first item in the experiment provides the instructions. For this, we use a form_text_dis-

play item that presents text and a button to continue the study. It can be added to the study by 

dragging it from the item toolbar into the overview area (cf., Figure 1). 

In the central part of our study, participants will make categorization decisions for different 

animal exemplars and pairs of response categories. To accommodate this recurring structure, we 

include a loop item that varies the information presented on each iteration. In the loop options, 

the stimulus material is represented as a table where rows reflect the different stimuli and columns 
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contain the variables that differ for each stimulus (Figure 1, right panel). In our case, the vital 

pieces of information are the name of the exemplar and the response categories, which are con-

tained in the columns Exemplar, CategoryLeft and CategoryRight. The additional columns specify 

the correct response and typicality of each combination; though not presented to participants, 

they are stored in the dataset and facilitate later analysis. Using the default settings shown in Fig-

ure 1, the order of stimuli is randomized, and each stimulus is presented once. 

Nested inside the loop, a sequence item is used to build each trial. It combines several screen 

pages as well as the collection of responses and logging of the stimulus and response information. 

Building a mouse-tracking screen. 

The central part of a mouse-tracking experiment is the stimulus display that presents the 

name of the exemplar and the two response buttons (located in the upper screen corners). We 

create this display by placing a sketchpad item into the trial sequence. In our example, it is named 

“present_stimulus” (Figure 2).4 The content of the sketchpad item is added using the visual editor. 

The available types of elements for creating content are shown in the toolbar to the left of the 

preview. After selecting an element type, the contents can be drawn inside the preview (to move 

or edit them afterwards they can be selected using the topmost option in the toolbar). In our ex-

ample, rectangles (rect elements) of equal size represent the response buttons, placed in the top 

left and right screen corners. Button labels are added in the center of each button using textline 

elements. An additional textline element is used to present the name of the to-be-categorized ex-

emplar in the lower part of the screen. By default, the inserted text is presented verbatim. How-

ever, one can easily vary content across trials by replacing static text with the appropriate variable 

names in square brackets (i.e., “[CategoryLeft]” and “[CategoryRight]” for the button labels and 

“[Exemplar]” for the exemplar name). In every iteration of the loop, OpenSesame will replace the 

variable name with the variable’s current value. To make sure that the button borders are identi-

fiable in the subsequent mousetrap_response item (cf., next section), we must furthermore label 

the two rect elements using the Name field (cf., Figure 2 top row). Each button border is labeled 

using the corresponding variable name (“[CategoryLeft]” and “[CategoryRight]”).  

                                                                    
4 The additional screens that are presented beforehand (“present_categories” and “present_start”) will be described 

in the section Design considerations.  
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Figure 2. Sketchpad item used to create the main stimulus display. The exemplar is displayed using a 

textline element that contains the name of the corresponding variable from the stimulus loop (cf., Fig-

ure 1). The two button borders are created using rect elements. Each button border is labeled using the 

Name field (see top row) and as label the corresponding values from the stimuli loop are used. The 

button labels are displayed using textline elements that are placed in the center of each button. 
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Figure 3. Settings of the mousetrap_response item. 

 

Tracking mouse movements. 

After creating the stimulus presentation, we specify the collection of mouse-tracking data 

and button clicks using the mousetrap_response item, which is inserted directly after the sketchpad 

item and called “get_response”.5 To start recording cursor positions immediately following stim-

ulus presentation, the duration of the sketchpad is set to 0. 

The mousetrap_response item records the cursor position at a constant sampling rate (10 ms 

by default) until the participant clicks on one of the buttons. To register responses, the corre-

sponding buttons need to be defined (Figure 3, upper part): first, the number of buttons is speci-

fied. Then, the name of the sketchpad that presents the buttons is entered (“present_stimulus”). 

                                                                    
5 The mousetrap plugin includes two items for tracking mouse movements. As an alternative to the mousetrap_re-

sponse item, a mousetrap_form item combines stimulus presentation and response collection; its contents are de-

fined using a basic syntax instead of a visual editor. More information is provided in Kieslich and Henninger (2017). 
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Finally, the buttons are specified via the labels of the button borders used on the sketchpad (“[Cat-

egoryLeft]” and “[CategoryRight]”). As a result, if the participant selects the left button, the value 

of the variable CategoryLeft is recorded as their response. 

The mousetrap_response item also provides additional options (cf., lower part of Figure 3). 

For example, if the name of the correct button is specified, OpenSesame will automatically create 

a variable correct that is set to 1 or 0 for correct and incorrect answers, respectively (this is useful 

for analysis, as well as for providing feedback during the study). Additional design options are 

discussed in the section Design considerations. 

Storing data. 

As the final part of the trial sequence, a logger item writes the data from the current trial 

into a log file. This includes variables pertaining to the study as a whole (e.g., the subject_nr), the 

current values of all variables in the stimuli loop (cf., Figure 1) and the response variables. 

OpenSesame stores participants’ responses in two places – global variables (response, re-

sponse_time etc.) that always store the last recorded response and response time in the experiment, 

and item-specific variables named after the item that collected the response (e.g., response_get_re-

sponse in the current example). The recorded mouse positions and associated timestamps are 

stored in item-specific variables only, in order to save memory (xpos_get_response, ypos_get_re-

sponse and timestamps_get_response). 

Design considerations 

When setting up mouse-tracking experiments, researchers are faced with a number of de-

sign choices. These include decisions about the starting procedure, the cursor speed and acceler-

ation settings, and the response mode (click or mouse-over). Each of these choices aims to ensure 

that all cognitive processes relevant to the decision take place while the tracking is active (which 

is, in many cases, the period between the click on a start button and the selection of one of the 

response options), so that the process of interest is captured in the trajectories. In the remainder 

of this section, we discuss available options for a number of important design choices, and their 

potential impact on the recorded mouse trajectories (see also Fischer & Hartmann, 2014; Hehman, 

Stolier, & Freeman, 2015; Kieslich & Henninger, 2017; Scherbaum & Kieslich, 2018, for additional 

discussions about design choices). 
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Start button. 

Virtually all mouse-tracking experiments try to enforce a comparable start position of the 

cursor across trials, thereby ensuring that the cursor is centered horizontally and approximately 

equidistant to all response options at the beginning of each trial. To achieve this, another screen 

with a start button can be added prior to the display of the task stimulus. The button ensures that 

participants have to return to a common area before subsequently initiating mouse movements 

for a new choice. In the current experiment, this is implemented using a sketchpad called “pre-

sent_start” combined with a mousetrap_response item called “get_start_click” (cf., Figure 1). As be-

fore, the screen content is assembled in the visual editor and a start button is placed in the lower 

center of the screen (and labeled “Start”). The name of the start button is entered in the options 

of the mousetrap_response item as the single possible response. As mouse-tracking data prior to 

the stimulus presentation are not of interest, the option save mouse-tracking data can be un-

checked for the “get_start_click” item. While the start button ensures that the cursor position at 

tracking onset is comparable across trials, it does not guarantee that it is identical. If this is de-

sired, one can select “Reset mouse position when tracking starts” and specify coordinates in the 

“get_response” item (cf., Figure 3). 

Information presentation. 

Another key challenge in designing mouse-tracking studies is the temporal order in which 

task-relevant information is presented to the participant. On the one hand, the amount of infor-

mation presented after the onset of tracking should be minimized to ensure that the collected 

mouse-tracking data reflects the decision processes. On the other hand, the decision-critical in-

formation needs to be withheld until tracking begins, to prevent participants from making their 

decision beforehand. In the current example, these considerations are accommodated by present-

ing the information about the two response categories for 2000 ms prior to tracking onset, but 

presenting the to-be-categorized exemplar only after the click on the start button (following the 

original procedure of Dale et al., 2007). We implemented this procedure by including another 

sketchpad item called “present_categories” at the beginning of the trial that presents only the two 

response categories, before the start button is made available to participants (cf., Figure 1). 
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Counterbalancing. 

Another design factor concerns the assignment of response options to the button positions 

on the screen. Specifically, in the current study we would like to ensure that the correct answer is 

not always presented on the same side. One solution for this is counterbalancing the position of 

the correct answer between stimuli, while keeping their position fixed for all participants (cf., Fig-

ure 1). Ideally, however, the position of both response options is drawn anew for each participant 

and stimulus (this can be achieved in OpenSesame through the advanced randomization operation 

shuffle horizontal). 

Starting procedure. 

For mouse-tracking to reflect the cognitive processes underlying the choice, movement 

must occur while the cognitive process is ongoing. It has been shown that the starting procedure 

has a considerable influence on the obtained trajectories (Scherbaum & Kieslich, 2018). 

Many mouse-tracking studies have used a so-called static starting procedure, in which the 

stimulus is shown immediately after participants have clicked on the start button and without any 

specific measures taken to ensure movement during processing (our tutorial experiment following 

Dale et al., 2007, is an example for such a setup). While many mouse-tracking studies that use a 

static starting procedure find theoretically relevant effects in mouse trajectories, this procedure 

does not exclude the possibility that (in some trials) decision-relevant processes take place before 

the mouse movement is initiated and therefore are not captured by mouse trajectories. 

To ensure that the cognitive processes under investigation do not take place before mouse 

movement initialization, some studies have modified the starting procedure. One option is the 

static starting procedure with delay, in which a brief lag of, for example, 500 ms, is inserted be-

tween clicking the start button and stimulus presentation. Previous studies reported that this of-

ten successfully led participants to initialize movement before the stimulus appeared (e.g., Spivey, 

Grosjean, & Knoblich, 2005). Other studies employ a static starting procedure with immediate 

stimulus presentation, but explicitly instruct participants to initiate their mouse movement within 

a certain time limit and display a warning to participants after the trial if the initiation time exceeds 

the threshold. The exact time limit depends on the task (a typical value is 400 ms; see Hehman et 

al., 2015, p. 388–389, for a discussion). 
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A more rigorous option, however, is to implement a dynamic starting procedure that presents 

the stimulus only after participants have moved the mouse upwards for a minimum distance (e.g., 

Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010). The dynamic procedure forces partici-

pants to initiate their movement in order to receive the critical information needed to make the 

choice. It can be implemented by placing an invisible horizontal boundary slightly above the start 

button that triggers the presentation of the stimulus once it is crossed (cf., Frisch, Dshemuchadse, 

Görner, Goschke, & Scherbaum, 2015). This procedure has been shown to lead to more consistent 

movements and larger effects in within-trial temporal analyses (Scherbaum & Kieslich, 2018).6 

Mouse sensitivity. 

Another design choice is the computer’s mouse sensitivity, in particular the cursor speed 

and acceleration. One option is to leave these settings to the operating system defaults (under 

Windows 7 and 10, medium speed with acceleration). However, it is often preferable to reduce 

mouse speed and switch off mouse acceleration (Fischer & Hartmann, 2014). This is particularly 

relevant when using a dynamic starting procedure to ensure that participants can read the dynam-

ically presented stimulus information while continuously moving upwards. The mouse sensitivity 

settings cannot be adjusted directly within OpenSesame, but need to be set in the computer’s sys-

tem preferences. 

Response mode. 

The two main response modes in mouse-tracking studies are clicking on and moving over 

the response buttons. In the mousetrap plugin, users can switch between the two response modes 

by checking or unchecking the option Click required to indicate response, which is enabled by de-

fault (cf., Figure 3). 

Data collection and testing. 

After creating the experiment, it can be run from within OpenSesame for testing or using 

OpenSesame Run for data collection in the laboratory (see Kieslich & Henninger, 2017, for more 

information on running mouse-tracking experiments). Mouse-tracking studies also usually assess 

the handedness of participants and the hand participants use for moving the mouse (with some 

authors recommending only to include right-handed participants, cf., Hehman et al., 2015). 

                                                                    
6 An example experiment implementing this procedure can be found at https://github.com/pascalkieslich/mouse-

trap-os#examples. 

https://github.com/pascalkieslich/mousetrap-os#examples
https://github.com/pascalkieslich/mousetrap-os#examples


12 MOUSE-TRACKING:  IMPLEMENTATION AND ANALYSIS  

Analyzing mouse-tracking data 

We will now demonstrate the typical steps of a basic mouse-tracking analysis using the data 

from the replication experiment described above (Kieslich & Henninger, 2017). For this analysis, 

we will use the mousetrap package (Kieslich et al., 2018) in the statistical programming language 

R (R Core Team, 2016), which facilitates preprocessing, analysis and visualization of mouse-track-

ing data.7 Once installed, mousetrap functions can then be made available within an R session by 

loading the package via:  

library(mousetrap) 

A detailed overview of its functionality is provided online at  

http://pascalkieslich.github.io/mousetrap/ or within R using the command:  

package?mousetrap 

In the following, we discuss the most important analysis steps, starting with data import 

and preprocessing operations, followed by the computation and analysis of common indices, tem-

poral analyses, and visualizations. 

Import 

First, the raw data need to be read into R’s workspace. OpenSesame stores the data for each 

participant in a separate csv file. To load all csv files from a directory and combine them into a 

single dataset, we use the read_opensesame function from the readbulk package (Kieslich & Hen-

ninger, 2016). The following command assumes that all data files can be found in the folder 

“raw_data” in the working directory and stores the imported data in the dataset “KH2017_raw” 

(this dataset is available once the mousetrap package has been loaded, so no raw data have to be 

imported to follow this tutorial): 

library(readbulk) 

KH2017_raw <- read_opensesame("raw_data") 

                                                                    
7 R is open-source and freely available from https://www.r-project.org/. We recommend using R in combination 

with RStudio (available from https://www.rstudio.com/), which greatly facilitates code development and analysis 

by providing many useful features such as code highlighting, debugging, and tools for data inspection. 

 

https://www.rstudio.com/
http://pascalkieslich.github.io/mousetrap/
https://www.r-project.org/
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Next, the data need to be transformed into a mousetrap data object to perform analyses using 

the mousetrap R package.8 This results in a mousetrap data object (called “mt_data” in the current 

analysis), which is described in detail in Information box 1: 

mt_data <- mt_import_mousetrap(KH2017_raw) 

Using this two-step procedure of reading and importing the mouse-tracking data, the 

mousetrap R package can also be used for data collected in other software. An example for reading 

and importing raw data collected with MouseTracker (Freeman & Ambady, 2010) is given in the 

documentation of the read_mt function, which can be accessed by entering: 

?read_mt 

Preprocessing 

Spatial transformations. 

In a typical two-alternative choice design (as implemented in the example experiment, see 

Figure 2), trajectories end either at the left or the right response option. As the overall spatial 

direction is irrelevant for most analyses (as opposed to the substantive meaning of the response 

button, which varies across trials if the position of alternatives is counterbalanced), all trajectories 

are remapped so that they end on the same side. By default, mousetrap maps the trajectories to 

the left, implying that trajectories that end on the right-hand side are flipped from right to left: 

mt_data <- mt_remap_symmetric(mt_data) 

Similarly, differences in the trajectories’ starting points are often not of substantive inter-

est. If the cursor’s starting position was not reset to exact coordinates during the experiment (as 

is the case for the example data set), it can be aligned by shifting the trajectories in preprocessing: 

mt_data <- mt_align_start(mt_data, start=c(0,0)) 

 

  

                                                                    
8 In case that only one mousetrap item in the experiment collected mouse-tracking data, the mt_import_mousetrap 

function automatically detects the mouse-tracking variables in the raw data. If more than one item stored mouse-

tracking data, the variable names have to be set explicitly once using the xpos_label, ypos_label, and timestamps_la-

bel arguments when importing data via the mt_import_mousetrap function. 
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Information box 1. Working with mousetrap data objects 

The mousetrap R package represents mouse-tracking data in a specialized data structure, 

a mousetrap data object. This allows the package to store and process mouse trajectories 

efficiently, and to link them to other information collected during the study. All mousetrap 

analysis functions use mousetrap data objects as input; therefore, the collected data must 

be imported before processing and analysis. A newly imported mousetrap data object con-

sists of a data.frame called data containing the trial information (without mouse trajecto-

ries) and an array called trajectories containing the recorded mouse-tracking data. 

 

The mousetrap data object can hold multiple sets of trajectories (e.g., mt_time_normalize 

adds the time-normalized trajectories as tn_trajectories). In subsequent analyses, the user 

can specify via the use argument whether an analysis (or visualization) should be per-

formed based on the raw trajectories (use="trajectories", which is used by default in 

most functions) or another trajectory array (e.g., use="tn_trajectories"). Other 

functions add new data.frames to the mousetrap object (e.g., mt_measures adds a data.frame 

called measures that contains trial-level indices). 

 

The mousetrap package is designed for processing and visualizing trajectories and the 

computation of indices. For statistical analyses of the computed indices, they can be 

merged with the other trial data via: 

results <- merge(mt_data$data, mt_data$measures, by="mt_id") 

 

Similarly, mouse trajectories can be transformed into a format required for the statistical 

analysis using the mt_export_long or mt_export_wide functions. The resulting data can then 

be analyzed outside of the mousetrap package using any standard analysis method. 
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Resampling. 

The cursor position is typically recorded at a constant sampling rate. The mousetrap plugin 

in OpenSesame records the mouse position every 10 ms by default (corresponding to a sampling 

rate of 100 Hz). Due to variation in trial durations, the number of recorded cursor positions may 

vary considerably across trials. To be able to aggregate trajectories or compare them statistically, 

one often requires an equal number of coordinates for all trajectories. To achieve this, studies 

commonly apply time-normalization: 

mt_data <- mt_time_normalize(mt_data) 

Time-normalization interpolates trajectories so that each is represented by the same num-

ber of positions (101 by default, following Spivey et al., 2005) separated by a (within-trial) constant 

time interval. Mousetrap stores the time-normalized data as a new set of trajectories within the 

mousetrap data object (see Information box 1). 

Another possibility is to interpolate trajectories so that each is represented by the same 

number of spatially equidistant positions (using mt_spatialize). This processing step facilitates the 

comparison of trajectory shapes and is instrumental in type-based analyses of trajectories (cf., 

Chapter 9). 

Data inspection and filtering. 

As a final step prior to analysis, trials are typically screened and filtered based on one or 

more criteria. If choices can be graded as correct, studies often exclude trials with incorrect re-

sponses to ensure a consistent interpretation of curvature across all trials (i.e., that increased cur-

vature always reflects attraction towards the distractor category). The mt_subset function can be 

used to select only correctly answered trials for further analysis (or to apply other filters):  

mt_data <- mt_subset(mt_data, correct==1) 

An additional concern in mouse-tracking analysis is whether the data contain movements 

that are presumably not related to the preference development but to other processes, such as 

information acquisition or slips of the hand. Information acquisition might, for example, be re-

flected by directed movements towards a point where information was presented on the screen. 

Slips of the hand, resulting, for example, from participants placing the mouse device somewhere 

else in order to avoid a physical obstacle (or in order to more comfortably move it), would lead to 

erratic movements and result in movements untypical for this context, for example, comparatively 

large amounts of up and down movements. The challenge is finding precise criteria to differentiate 
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between relevant and irrelevant movements. One possibility is an exploratory approach, for ex-

ample, visually inspecting all trials by plotting them either in a single figure (using mt_plot or 

mt_heatmap, see also top panel of Figure 5 in the section Trajectory types) or separately (using 

mt_plot_per_trajectory). If to-be-excluded movement patterns have been specified, separate plots 

per trajectory might also be provided to human raters who can code whether these are present in 

a trial. Another possibility is to exclude trials based on a numeric criterion, such as trials exceeding 

an absolute or relative reaction time or trials containing several flips along the y-axis (which prob-

ably indicate large amounts of task-irrelevant tracking data). A more detailed discussion is pro-

vided in Kieslich et al. (2018). Especially if exclusion criteria were not defined a priori, the impact 

of the criterion applied should be reported; additional pre-registered studies might be conducted 

to validate the chosen criteria and to replicate the results under strictly confirmatory conditions. 

Analysis 

To analyze effects of the experimental manipulation, a common first step is the visual in-

spection of aggregate time-normalized mouse trajectories. Mousetrap provides the mt_plot_aggre-

gate function, which, if used as below, aggregates the time-normalized trajectories for each con-

dition first within and then across participants and plots the result: 

mt_plot_aggregate(mt_data, use="tn_trajectories", 

  x="xpos", y="ypos", color="Condition",  

  subject_id="subject_nr") 

As can be seen in Figure 4, the aggregate mouse trajectory in the current study is more 

curved towards the non-chosen option for atypical than for typical exemplars – consistent with 

the hypothesis by Dale et al. (2007). Whether the aggregate trajectories are an adequate summary 

of the trial-level trajectories is discussed in the section Trajectory types. 

A wide range of analysis methods are available for mouse-tracking data (for overviews, see 

Hehman et al., 2015; Kieslich et al., 2018). They can roughly be categorized into analyses that 

focus on the temporal development of a certain characteristic over the course of a trial (such as x-

position, velocity or movement direction, see section Temporal analyses) and those that summa-

rize a particular characteristic of each trajectory by computing one index value per trial. Many 

common indices can be computed using the mt_measures function: 

mt_data <- mt_measures(mt_data) 
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Figure 4. Aggregate time-normalized trajectories per typicality condition. Trajectories were first aligned 

to a common start position, remapped to the left, and finally aggregated first within and then across 

participants. Boxes representing the response buttons were added for clarity. 

 

 

 

An overview of the different indices is given in Table 1 and further information about work-

ing with the computed indices is provided in Information box 1. Different types of indices and 

their interpretation will be discussed in the following. 

Curvature. 

The curvature of the response trajectory is used to assess the degree of its attraction to-

wards the non-chosen option. It is assumed to be driven by the difference in activation between 

the non-chosen and the chosen option – in that a smaller difference in activations leads to a 

stronger curvature (Spivey, Dale, Knoblich, & Grosjean, 2010). A number of different indices have 

been suggested to quantify curvature (cf., Table 1). Their exact computation differs, but they are 

often highly correlated in practice (see Kieslich et al., 2018; Stillman et al., 2018). 

  

0

250

500

750

-500 0 500

x coordinate (px)

y 
co

o
rd

in
at

e
 (

p
x
)

Condition

Atypical

Typical



18 MOUSE-TRACKING:  IMPLEMENTATION AND ANALYSIS  

Table 1. Selected mouse-tracking measures, their variable name (in brackets, as used by the 

mt_measures function of the mousetrap R package) and definition. 

Type Measure Definition 

Curvature Maximum absolute deviation 

(MAD) 

Signed maximum absolute deviation of  

observed trajectory from direct path 

 Maximum deviation above 

(MD_above) 

Maximum deviation above direct path 

 Average deviation (AD) Average deviation of observed trajectory  

from direct path 

 Area under curve (AUC) Geometric area between observed trajectory  

and direct path 

Complexity x-flips (xpos_flips) Number of directional changes along x-axis 

 x-reversals (xpos_reversals) Number of crossings of y-axis 

 Sample entropy  

(sample_entropy) 

Degree of unpredictability of movement  

along x-axis 

Time Response time (RT) Time until response is given 

 Initiation time  

(initiation_time) 

Time until first movement is initiated 

 Idle time (idle_time) Total time without movement across trial 

Derivatives Total distance (total_dist) Euclidean distance traveled by trajectory 

 Max velocity (vel_max) Maximum movement velocity 

 Max acceleration (acc_max) Maximum movement acceleration 

Note: The direct path refers to the straight line connecting the start and end point of the observed trajectory. 

Deviations/areas above the direct path receive a positive sign and deviations/areas below receive a negative sign. 

For all derivative measures, it is assumed that movements across both x and y dimensions are taken into account 

(derivatives have to be calculated using mt_calculate_derivatives before calling mt_measures). Sample entropy is 

computed using mt_sample_entropy (based on the time-normalized x-positions by default). 
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In the following, we focus on a frequently used index known as the (signed) maximum abso-

lute deviation (MAD). To compute the MAD, imagine an idealized, direct line between the start and 

end point of the trajectory, and that lines perpendicular to this idealized line are drawn to connect 

it with every point on the original trajectory. The value of the MAD is defined as the length of the 

longest of these lines. The sign of the MAD is positive if the deviation is largest above the direct 

path (in the direction of the non-chosen alternative) and negative if the point of strongest devia-

tion occurs below. 

To assess whether the MAD differs between experimental conditions, mouse-tracking stud-

ies often aggregate the MAD values across trials per participant and condition, and then compare 

the aggregate MAD values between conditions using a paired t-test.9 These operations can be per-

formed using mt_aggregate_per_subject and R’s standard t.test function: 

 

agg_mad <- mt_aggregate_per_subject(mt_data, 

  use_variables="MAD", use2_variables="Condition", 

  subject_id="subject_nr") 

 

t.test(MAD~Condition, data=agg_mad, paired=TRUE) 

 

In line with the hypothesis by Dale et al. (2007), the MAD values indicate larger curvature in 

the atypical (M = 343.8 px, SD = 218.6 px) than in the typical condition (M = 172.2 px, SD = 110.8 

px), t(59) = 6.73, p < .001. A replication of the original analyses by Dale et al. using the current 

dataset can be found online at https://github.com/pascalkieslich/mousetrap-resources. 

Trajectory types. 

While aggregate response trajectories (cf., Figure 4) and curvature indices provide a first 

indication of the average curvature of the trajectories in each condition, they do not necessarily 

represent the shape of the individual trajectories well. Specifically, an aggregate curved trajectory 

might result from different types of trajectories, for example, a mixture of straight lines and tri-

angular “change of mind” trajectories which first head directly to the non-chosen and then to the 

chosen option (cf., Chapter 9). If this is the case, the average trajectory might not be representative 

                                                                    
9 Analyses can also be performed on the trial level using mixed-effects models that can account for individual dif-

ferences between participants as well as trial-level predictors (see https://github.com/pascalkieslich/mousetrap-

resources). 

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources
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of the movement patterns observed in the study, but purely an artefact of aggregation. Under these 

circumstances, the shape of the aggregate trajectory would provide only limited (and potentially 

misleading) information about the underlying cognitive processes. 

Several methods have been suggested to assess the degree of heterogeneity of the individual 

trajectories on the trial level. Previous approaches have focused on the distribution of trial-level 

curvature indices (such as area under curve or MAD, cf., Table 1) and tested them for indications 

of bimodality. The assumption behind these approaches is that gradually curved trajectories on 

the trial level should result in a unimodal distribution, while a combination of straight and ex-

tremely curved trajectories should result in a bimodal distribution (Hehman et al., 2015). The bi-

modality of the distribution is frequently assessed by computing the bimodality coefficient (BC; 

Pfister, Schwarz, Janczyk, Dale, & Freeman, 2013) which is interpreted as bimodal for values > .555 

(Freeman & Ambady, 2010). Alternative methods for identifying bimodality have been discussed, 

especially the Hartigan’s dip statistic (Freeman & Dale, 2013). Both methods are implemented in 

the mt_check_bimodality function. 

Instead of attempting to detect mixtures of distinct trajectory types based on the distribu-

tion of curvature indices (which condense each trajectory to a single numeric value), more recent 

analysis methods take into account the complete shape of each trajectory by using every point of 

the trajectory. The shape of individual trajectories can be assessed visually by plotting raw or 

smoothed heatmaps with the mt_heatmap function and by comparing heatmaps between condi-

tions using the mt_diffmap function (code examples are provided at https://github.com/pas-

calkieslich/mousetrap-resources). 

As can be seen in Figure 5 (middle panel), there appear to be different types of trajectories 

on the trial level in the current study, with a large proportion of straight and mildly curved trajec-

tories and a small proportion of extremely curved, “change of mind” trajectories. More im-

portantly, a difference heatmap reveals that the relative occurrence of these types differs between 

conditions, with a higher proportion of extremely curved trajectories in the atypical condition (or-

ange areas in Figure 5, bottom panel). Analyses that go beyond a visual inspection to identify tra-

jectory types and instead use a clustering approach based on spatial similarity (or the assignment 

of trajectories to different prototypes) are also implemented in the mousetrap R package and de-

scribed in Chapter 9 (see also Wulff, Haslbeck, & Schulte-Mecklenbeck, 2018). 

  

https://github.com/pascalkieslich/mousetrap-resources
https://github.com/pascalkieslich/mousetrap-resources
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Figure 5. Heatmap of the (remapped) individual trajectories (top panel), smoothed heatmap (middle 

panel) and difference of smoothed heatmaps between conditions (bottom panel), where blue indicates 

higher density in the typical and orange higher density in the atypical condition (white indicates com-

parable density).  
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The different trajectory types and their frequency have also been used to distinguish be-

tween different theoretical models (see Chapters 9-10 for more information). When used to this 

end, it is important to keep in mind that the setup of mouse-tracking studies can influence the 

shape of individual trajectories (see section Design considerations). In the current study, the occur-

rence of rather “extreme” trajectory types (straight and “change of mind”) may have been caused 

by the relatively simplistic setup of the study with a static starting procedure, default mouse sen-

sitivity settings and the use of a click instead of a mouse-over response. 

Complexity. 

In addition to curvature, mouse-tracking studies have also used the complexity of the move-

ment as an indicator of response competition. If multiple response options simultaneously attract 

the cursor, this should result in more complex, less smooth trajectories compared to cases where 

only one option exerts an influence (Dale et al., 2007).  

In two-alternative tasks, complexity is typically assessed with regard to movements along 

the horizontal axis, since this is the dimension that separates the options. The most common 

measure of complexity is x-flips, the number of directional changes along the x-axis (Freeman & 

Ambady, 2010), which is calculated by the mt_measures function (Table 1). As response competi-

tion might not always lead to directional changes, other mouse-tracking studies have used sample 

entropy (Dale et al., 2007; McKinstry, Dale, & Spivey, 2008) which quantifies the degree of unpre-

dictability of movement along the x-axis. Sample entropy can be computed using mt_sample_en-

tropy, which uses time-normalized trajectories by default, following the recommendation that 

each trajectory be represented by the same number of positions (Hehman et al., 2015): 

mt_data <- mt_sample_entropy(mt_data, use="tn_trajectories") 

Koop and Johnson (2013) propose a substantive interpretation of complexity-related 

measures in preferential choice tasks, based on the assumption that the x-position at a specific 

point during the trial is a proxy for the current absolute preference. They suggest that x-flips re-

flect changes in the momentary valence whereas x-reversals (i.e., the number of times the cursor 

crosses the vertical axis at the midpoint between the two options) indicate changes of absolute 

preference. Recently, the sequence in which certain areas of interest (one for each choice option) 

are visited with the mouse cursor has also been used to identify how often participants changed 

their mind during the decision-making process (Szaszi, Palfi, Szollosi, Kieslich, & Aczel, 2018; see 

also Travers, Rolison, & Feeney, 2016). 
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As with curvature indices, complexity indices can be analyzed either by aggregating values 

per participant and condition (using mt_aggregate_per_subject) and comparing the result across 

conditions, or on the trial level using mixed-effects models. 

Temporal analyses. 

Although many studies use it in this sense, mouse-tracking is not limited to the analysis of 

aggregate indices that collapse each trajectory to a single value. Analyses of trajectories’ temporal 

development can shed light on the time course of response option activations across the trial and, 

in particular, how and when different cognitive processes influence the trajectory (Hehman et al., 

2015). In the following, we will briefly illustrate some simple use cases. 

 

 

Figure 6. Plot of the average time-normalized x-position over time. For each time step, x-positions were 

first averaged within participants and condition. 

 

One purpose of temporal analyses is to supplement aggregate analyses of trajectory curva-

ture by showing at which point and for how long aggregate trajectories diverge between condi-

tions. Previous studies (e.g., Dale et al., 2007) have examined this by comparing the horizontal 

positions of the time-normalized trajectories at each time step using a series of t-tests between 
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conditions (code examples can be found at https://github.com/pascalkieslich/mousetrap-re-

sources). Using this approach reveals that for time steps from 54 to 95 (of 101 steps) the average 

x- coordinates differed between conditions (Figure 6). If a theory provides specific predictions with 

regard to the temporal development, for example, whether the divergence between conditions 

should occur early or late in the decision-making process, this can be used to test them. Note that 

the comparison of trajectories between conditions can be problematic if response time differences 

between conditions are large, and that temporal analyses can also be conducted based on raw in-

stead of time-normalized trajectories (see also Hehman et al., 2015). 

 

 

Figure 7. Riverbed plot of the distribution of x-positions across time for time-normalized trajectories 

separately for the two experimental conditions. For each time step, the colors indicate the relative fre-

quency with which each bin of x-positions was observed. 

 

As with aggregated trial-level indices, aggregated x-positions may not necessarily represent 

the underlying trial level trajectories well. To inspect whether this is the case it is useful to illus-

trate the full distribution of trial-level x-positions across normalized time using the mt_plot_riv-

erbed function (following an approach by Scherbaum et al., 2010). As can be seen in Figure 7, the 

aggregate x-positions displayed in Figure 6 are a rather poor representation of the individual tra-

jectories, which vary greatly. Specifically, while the majority of trajectories go directly to the even-

tually chosen option, a substantial number of trajectories first moves to the non-chosen option 

(crossing the midline). This means that the data may be better analyzed on the trial level using, 
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for instance, mixed-effects models or type-based analyses (Wulff et al., 2018; see also Chapter 9). 

Moreover, Figure 7 reveals that in most trials of both conditions the cursor remained in a neutral 

position (in many cases it stayed on the start button) for more than half of the trial, a behavior 

that is probably related to the use of a static starting condition that did not enforce early move-

ment initiation (cf., Scherbaum & Kieslich, 2018). 

In addition to analyzing the temporal development of the cursor position, previous mouse-

tracking studies have also focused on other variables derived from it, especially velocity, acceler-

ation, and movement angle. The analysis of velocity and acceleration has been used to investigate 

response activation and competition (Hehman et al., 2015). In mousetrap, velocity and accelera-

tion can be computed using mt_calculate_derivatives which attaches velocity and acceleration val-

ues to each of the recorded cursor positions.10 Subsequent analyses can be performed as sketched 

above, using the velocity values instead of x-positions as the dimension of interest. 

Finally, an emerging class of analyses has focused on the movement angle, which quantifies 

the direction of movement over time indicating, for example, whether participants move towards 

or away from a specific response alternative. Previous studies have used movement angles to dis-

entangle when and to which extent different factors influence the movement direction (e.g., 

Dshemuchadse, Scherbaum, & Goschke, 2013; Scherbaum et al., 2010; Sullivan, Hutcherson, Har-

ris, & Rangel, 2015). For details on these approaches, see Scherbaum and Dshemuchadse (2018). 

Summary and conclusion 

In mouse-tracking studies, participants’ cursor movements are recorded as they choose be-

tween different options represented as buttons on a computer screen. Thereby, mouse-tracking 

aims to measure the degree of conflict between the alternatives and the temporal development of 

its resolution. While Chapter 9 provides a detailed look at the types of trajectories revealed in this 

paradigm, and Chapter 10 provides an introduction to this method and its use in the literature, 

this chapter has shown how to construct a mouse-tracking study using the mousetrap plugin for 

the graphical experiment builder OpenSesame, and how to analyze the resulting data in the 

                                                                    
10 Velocity and acceleration can be calculated for raw trajectories (by default) as well as for time-normalized tra-

jectories. In addition, both can be computed based on the Euclidean distance traveled along the x- and y-dimension 

(by default) or for a single dimension only. 
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mousetrap R package. We have covered technical issues surrounding the application of this 

method, and highlighted design considerations and their influence on the collected data. 

The strength of mouse-tracking lies in the ease with which it can be applied. Using only 

standard laboratory hardware, cognitive processes can be tracked at high temporal resolution. It 

is also a flexible tool that can be adapted to many different tasks, and which is even more powerful 

in combination with other process tracing methods (e.g., eye-tracking, cf., Koop & Johnson, 2013; 

Quétard et al., 2016). Data collection and processing as described in this chapter are handled en-

tirely by free, open-source software (Kieslich & Henninger, 2017; Kieslich et al., 2018), making 

mouse-tracking easily accessible to interested researchers and transparent to those looking to rep-

licate findings or adapt and extend the methods described herein. 

As a fairly recent addition to the family of process tracing methods, many aspects of the 

method are not yet fully standardized. Therefore, the degrees of freedom with regard to data col-

lection, processing, and analysis are substantial. Where available, we have pointed to the current 

state of knowledge regarding best practices, which is bound to grow over time. We advise users of 

mouse-tracking to seek convergence between analyses and indices where no standard has been 

established so far. In doing so, they should also consider the effects of aggregation by inspecting 

the distribution of trajectories and indices on the trial level (cf., Chapter 9). While researchers may 

often explore different experimental setups and analyses if they apply mouse-tracking in a new 

domain, (additional) pre-registered studies should be conducted to perform strictly confirmatory 

hypothesis testing (Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012). 

In sum, we have demonstrated the potential mouse-tracking has as a process tracing method 

for various areas of decision research. Given the limits of an introductory tutorial, we have only 

covered the most frequently used analyses. Similarly, the current chapter has limited itself to the 

frequently investigated two-option design, but mouse-tracking can easily be extended to situa-

tions with more than two alternatives (e.g., Koop & Johnson, 2011). Lastly, more sophisticated 

analysis methods are being developed to more fully harvest the rich potential of mouse-tracking 

data, such as time continuous multiple regression (Scherbaum & Dshemuchadse, 2018), entropy 

approaches (Calcagnì, Lombardi, & Sulpizio, 2017), generalized processing tree models (Heck, 

Erdfelder, & Kieslich, in press), and decision landscapes (Zgonnikov, Aleni, Piiroinen, O’Hora, & 

di Bernardo, 2017). Thus, we are confident that mouse-tracking will continue to offer researchers 

novel insights into how decision processes unfold over time. 
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Recommended reading list  

• https://github.com/pascalkieslich/mousetrap-resources: resources for creating mouse-

tracking experiments and analyzing mouse-tracking data (including the examples from the 

current chapter). 

• Kieslich and Henninger (2017): an introduction into and validation of the mousetrap plugin 

for OpenSesame, which also provides detailed information about the example study used in 

the current chapter. 

• Kieslich, Wulff, Henninger, Haslbeck, and Schulte-Mecklenbeck (2018): a detailed tutorial 

on analyzing hand- and mouse-tracking data using the mousetrap R package. 

• Hehman, Stolier, and Freeman (2015): a description of several analytic approaches for 

mouse-tracking data. 

  

https://github.com/pascalkieslich/mousetrap-resources
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