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Abstract We improve current instability-based methods for the selection of the num-
ber of clusters k in cluster analysis by developing a normalized cluster instability
measure that corrects for the distribution of cluster sizes, a previously unaccounted
driver of cluster instability. We show that our normalized instability measure outper-
forms current instability-based measures across the whole sequence of possible k and
especially overcomes limitations in the context of large k. We also compare, for the
first time, model-based and model-free approaches to determine cluster-instability
and find their performance to be comparable. We make our method available in the
R-package cstab.

Keywords cluster analysis · k-means · stability · resampling

1 Introduction

A central problem in cluster analysis is selecting the appropriate number of clusters
k. To develop a method that identifies the true number of clusters k∗, one requires
a formal definition for what a ’good clustering’ is. Different definitions have been
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proposed and it is generally accepted that the appropriate definition depends on the
clustering problem at hand (see e.g. Friedman et al, 2001; Hennig, 2015).

Most definitions in the literature define the quality of a clustering in terms of a
distance metric between the clustered objects. These methods select k by trading-off
a function of this distance metric against the number of k. The most commonly used
distance metric is the average (across clusters) within-cluster dissimilarity W (k),
which is the average dissimilarity between all object-pairs within the same cluster.
When selecting the k based on this metric it is assumed that W (k) would exhibit
a ’kink’ at k = k∗, i.e., when the assumed number of clusters k matches the true
number of clusters k∗. This is because for k = k∗ clusters are highly homogenous
allowing for only minimal improvements in W (k) when splitting objects further. All
methods in this class, in one way or another, aim to identify this ’kink’. Two examples
are the Gap statistic (Tibshirani et al, 2001) and the Jump statistic (Sugar and James,
2011). Related metrics are the Silhouette statistic (Rousseeuw, 1987), which is a
measure of cluster separation rather than variance, and a refinement thereof, the Slope
statistic (Fujita et al, 2014).

Another approach, which is the focus of this paper, defines a good clustering in
terms of its stability against small pertubations of the data. Correspondingly, stability-
based methods select the k yielding the most stable clustering. Stability-based meth-
ods are attractive because they do not require a metric for the distance between objects
and have been shown to perform at least as well as state-of-the-art distance-based
methods (Ben-Hur et al, 2001; Tibshirani and Walther, 2005; Hennig, 2007; Wang,
2010; Fang and Wang, 2012).

In the present paper, we show that two previously proposed stability-based ap-
proaches, the model-based approach (Fang and Wang, 2012) and the model-free ap-
proach (Ben-Hur et al, 2001), depend heavily on the distribution of cluster sizes M
leading to incorrect estimates k̂ especially when the list of candidate k is not re-
stricted to small numbers. To address this problem, we develop a normalized cluster
instability measure correcting for the influence of M . We show that our normalized
instability measure outperforms current instability-based measures across the whole
sequence of possible k. We also compare, for the first time, model-based and model-
free approaches to determine cluster-instability and find their performance to be com-
parable. We make our method available in the R-package cstab, which is available
on The Comprehensive R Archive Network (CRAN).

2 Clustering Instability

A clustering ψ(·) is stable when it is robust against perturbations of the data. Sta-
ble clusterings, thus, assign two objects X1, X2 that occupy the same cluster in the
clustering ψa(X) based on the original data X to be in same cluster in a clustering
ψb(X̃) based on a perturbed data X̃ and vice versa for objects not occupying the same
cluster. In this section, we formalize this idea following Wang (2010) using based on
clustering distance and clustering instability.

Let X = {X1, . . . , Xn} ∈ Rn×p be n samples from an unknown distribution
P defined on Rp. We define a clustering ψ : Rn×p 7→ {1, . . . ,K}n as a mapping
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from a configuration Xi ∈ Rp to a cluster assignment k ∈ {1, . . . ,K}. A clustering
algorithm Ψ(X, k) learns such a mapping ψ from data.

Definition 1 (Clustering Distance) The distance between any pair of clusterings
ψa(X) and ψb(X) is defined as

d(ψa(X0), ψb(X
0)) = |I{ψa(X1)=ψa(X2)} − I{ψb(X1)=ψb(X2)}|,

whereX0 = {X1, X2} is a fixed vector containing the two objectsX1, X2 ∈ Rp and
I{E} is the indicator function for the event E.

Figure 1 illustrates the four possible cases that contribute to the clustering distance.
To the extent that ψa, ψb agree on whether any two objects X1, X2 occupy the same
cluster or not (I and II), the distance approaches zero. Conversely, to the extent that
ψa, ψb disagree (III and IV), the distance approaches 1. The clustering distance, thus,
reflects the relative proportion of cases I and II versus cases III and IV. Accordingly,
clustering distance can also be expressed as:

d(ψa, ψb) = P [ψa(X1) = ψa(X2), ψb(X1) 6= ψb(X2)]

+ P [ψa(X1) 6= ψa(X2), ψb(X1) = ψb(X2)] .
(1)

Fig. 1 The clustering distance for the four possible configurations of clustering assignments of clusterings
ψa, ψb for two objects X1, X2.

Definition 2 (Clustering instability) We define the clustering instability of cluster-
ing algorithm Ψ(X, k) as

s(Ψ,X, k) = EP

 1

n(n− 1)/2

n∑
i,j=1,i6=j

d(ψa(Xi), ψb(Xj))

 ,
where X ∈ Rn×p is the original data drawn from an unknown distribution P defined
on Rp. The clusterings ψa and ψb are obtained from two independent samples X̃a

and X̃b drawn from P . The expectation is taken with respect to P .
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As the arithmetic over clustering distances, it holds that s(Ψ,X, k) ∈ [0, 1]. We
estimate the true number of clusters k∗ by finding the minimum of the cluster insta-
bility s(Ψ,X, k) ∈ [0, 1] across a sequence of k

k̂ = arg min
2≤k≤n

s(Ψ,X, k). (2)

Note that, when we defined clustering instability (2, we used two independent
samples X̃a, X̃b from the distribution P to obtain clusterings from ”perturbed” data.
Of course, in practice the distribution P is unknown. Following Fang and Wang
(2012), we resolve this issue using a bootstrap approach. Specifically, we take sam-
ples from the original data X and treat them as surrogates for independent samples
P .

The bootstrap samples will usually to contain different sets of objects - we esti-
mate the expected1 proportion of objects shared across bootstrap samples to be≈ 0.4.
This leaves two routes for computing from them a clustering distance: to only rely
on the objects shared across bootstraps, which we call the model-free approach, or to
rely on model-based cluster predictions to derive cluster assignments for all objects
across both bootstraps, which we call the model-based approach. The next sections
describes these approaches in detail.

3 Model-Based Clustering Instability

The model-based approach to computing clustering instability uses clustering algo-
rithms Ψ(·, k) to learn a partitioning of Rp into k non-empty subsets (clusters) for
each of the two perturbed data sets X̃1, X̃2. These partitions are then used to assign
unseen objects to the clusters. An example for a model-based clustering algorithm is
the k-means algorithm, which partitions Rp into k Voroni cells (Hartigan, 1975).

This approach was first described as a cross validation (CV) scheme (Tibshi-
rani and Walther, 2005; Wang, 2010). Here we present the algorithm for the non-
parametric bootstrap, which has been shown to perform better than CV (Fang and
Wang, 2012).

1. Take bootstrap samples X̃a, X̃b from the empirical distribution X
2. Compute clustering assignments ψa(X̃b), ψb(X̃b) using the clustering algorithm
Ψ(·, k)

3. Use the clusterings ψa, ψb to compute assignments ψa(X), ψb(X) on the
original data X

4. Use ψa(X), ψb(X) to compute the clustering instability si as in (2)

Repeat 1-4 B times and return the average instability
s̄(Ψ,X, k) = B−1

∑B
i=1 si(Ψ,X, k).

Algorithm 1: Model-Based Clustering Instability

1 For large n, we have P (aj ∈ B1 ∧ aj ∈ B2) = P (aj ∈ B1)P (aj ∈ B2) = (1− 1
e
)2 ≈ 0.400
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The model-based approach can also be used with spectral clustering (Ng et al,
2002) using the method described in Bengio et al (2003). The major drawback of the
model-based approach in Algorithm 1 is that step 4 requires a complete partitioning
of Rp, rendering unavailable popular algorithms such as, for instance, hierarchical
clustering (Friedman et al, 2001). One could nonetheless employ the model-based
procedure, in these cases, using an additional classifier (e.g. k nearest neighbors) to
predict unseen objects. However, it may be more elegant to sidestep this issue using
the model-free approach described below.

4 Model-Free Clustering Instability

The model-free approach (Ben-Hur et al, 2001) uses any clustering algorithm Ψ(·, k)

to compute two clusterings on the two bootstrap samples X̃a, X̃b. Clustering insta-
bility is then only computed for the intersection X̃a∩b = X̃a ∩ X̃b, that is, the set
of objects that are shared across both bootstrap samples. This approach avoids the
problem of having to assign unseen objects, because it only consider objects that are
in both clustering.

1. Take bootstrap samples X̃a, X̃b from the empirical distribution X
2. Compute clustering assignments ψa(X̃a), ψb(X̃b) using the clustering algorithm
Ψ(·, k)

3. Take the intersection X̃a∩b = X̃a ∩ X̃b

4. Use ψa(X̃a∩b), ψb(X̃a∩b) to compute the clustering instability si as in (2)

Repeat 1-4 B times and return the average instability
s̄(Ψ,X, k) = B−1

∑B
i=1 si(Ψ,X, k).

Algorithm 2: Model-Free Clustering Instability

Because no unseen objects need to be assigned, Algorithm 2 can be inmplemented
with any clustering algorithm Ψ(·, k). A potential prize for this flexibility is that Al-
gorithm 2 compared to Algorithm 1 computes clustering instability only on approxi-
mately 40 % of the original data, implying that more bootstrap comparisons may be
needed to achieve equal performance.

5 Normalized Clustering Instability

In this section, we introduce a normalized clustering instability (2) for both the model-
based and the model-free approaches to remedy a shortcoming of current stability-
based methods: clustering instability (as defined in 2) has the undesirable property
that it depends substantially on the distribution of cluster sizes M and by extension
the number of clusters k, irrespective of the true number of clusters k∗. To see this,
consider the clustering distance in (1): for this distance to be nonzero two objects
X1, X2 must be able to change their cluster assignment with regard to each other.
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This excludes k = 1, whereX1, X2 are forced to occupy the same cluster, and k = n,
where X1, X2 are forced to occupy different clusters. Considering now the case of
k = n− 1, then the majority of objects will again be bound to occupy different clus-
ters, expect for two that could occupy the same 2-object cluster in both clusterings or
not. As a result, the clustering instability will, on average, be larger for n − 1 than
n, but not by much. Conversely, the only way for the clustering instability to be large
is in the presence of moderately sized k and relatively even cluster sizes. This means
that in order to properly evaluate clustering instability one needs to take account of
the distribution of cluster sizes M . Below we work out the exact relationship be-
tween s(Ψ,X, k) and M in order to develop a new, normalized clustering instability
measure.

First, however, we demonstrate possibly the most serious problem associated with
the dependency of s(Ψ,X, k) onM . Figure 2 shows a typical instability path obtained
for the clustering problem previously studied by Fang and Wang (2012). The path
shows a local minimum at k = k∗ = 3, the true number of clusters, but beginning at
k = 6 clustering instability begins to drop. Critically, instability crosses the value of
instability for k = 3 (dashed lines) at k = 23 (model free) and k = 25 (model based).
This is a general pattern of (unnormalized) cluster instability paths and a result of its
dependency on M . As a consequence, k̂ will substantially overestimate k∗, when the
candidate set is not restricted to small ks. One approach to address this issue is to
restrict the set of candidate k to small numbers, as was done in previous publications,
e.g., Fang and Wang (2012) and Ben-Hur et al (2001). As it is difficult to know it
difficult to know, however, when s(Ψ,X, k) drops below s(Ψ,X, k∗) – the exact point
of intersection will vary as a function of a variety of factors including the number of
true clusters and cluster separation – this approach will unlikely be very reliable.
Importantly, this approach will take account of the complex relationship between M
and s(Ψ,X, k), impacting the latter across the entire range of k and corrupting its
signal of k∗.
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Fig. 2 Left: mixture of three (each n = 50) 2-dimensional Gaussians with zero covariance and σi = 1.
Right: instability path for the model-based (red) and model-free instability approach (black), both normal-
ized (dashed) and unnormalized (solid). The horizontal lines indicate the local minimum of the instability
path at k∗ = 3 for each method. The estimate k̂ will be incorrect (too large) if we consider ks with an
instability below the corresponding horizontal line.

We now show how d(ψa, ψb) as defined in (1) is related to M and by extension
k, irrespective of the number of true clusters k∗. Let M = {n1, n2, . . . nK} be the
number of objects in each of the clusters in a given clustering ψ(X). Assuming in-
dependence between ψa()̇ and ψb()̇ given independently drawn X̃a, X̃b we begin by
rewriting the clustering distance (1) as

d(ψa, ψb) = P [ψa(X1) = ψa(X2)] ∗ P [ψb(X1) 6= ψb(X2)]

+ P [ψa(X1) 6= ψa(X2)] ∗ P [ψb(X1) = ψb(X2)]).
(3)

From (3) we see that the clustering distance depends essentially on two probabilities,
the probability that two objectsX1, X2 are assigned to the same clusterP [ψ(X1) = ψ(X2)]
and its complement P [ψ(X1) 6= ψ(X2)], which we can express using the former,
i.e., P [ψ(X1) 6= ψ(X2)] = 1 − P [ψ(X1) = ψ(X2)]. Thus, we can express (3), us-
ing a single probability, the probability of two objects occupying the same cluster. In
practice this probability will depend heavily on features of the data generating pro-
cess such as e.g., cluster separation, making it possible to use (3) as a signal of k∗.
However, as we will work out below, P [ψ(X1) = ψ(X2)] is also a function of M .

Using combinatorics, we will express P [ψ(X1) = ψ(X2)] as the ratio of the
number of possible clusterings Npair for which X1, X2 are in the same cluster and
the number of all possible clusterings Ntot, each of which depending exclusively on
M ,

P [ψ(X1) = ψ(X2)] =
Npair
Ntot

. (4)
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We compute

Ntot =
∏

1≤i≤K

(
mi

ni

)
, (5)

where ni is the number of objects in cluster i and mi is the number of objects that
are not yet contained in already considered clusters2

mi =
∑
i≤j≤k

nj .

Intuitively, this counts all possible ways to select n1 objects from the set of all
objects, which then is multiplied by the number of possible ways to select n2 objects
from the set of all objects minus the just selected n1 objects, etc.

Further, we compute Npair

Npair =
∑

1≤i≤k
ni≥2

(
mi − 2

ni − 2

) ∏
1≤j≤k

j 6=i

(
mj

nj

)
. (6)

Here, the first term assumes two objects to occupy the same cluster, while the
second term, analogous to above, computes the number of possible ways to distribute
the remaining objects across clusters, respecting the cluster sizes M .

Together, Ntot and Npair (4) gives us P [ψ(X1) = ψ(X2)], the probability that
two objects X1, X2 are assigned to the same cluster by chance. Plugging this result
into the definition of clustering distance in (3) we obtain dr(ψa, ψb), the expected
clustering distance under random object allocation for a given M and k.

Having defined dr(ψa, ψb), we can study its behaviour as a function of M and
k. Figure 3 shows dr for k ∈ {2, 3, . . . , 100} and M ∼ Multinomial(θ) with θ ∼
Dirichlet(1). Three key results emerge. First, dr is a non-monotonic function of k
showing maximal instability at k = 3. Second, the largest change in dr occurs in
the range of k = [1, 10] and, thus, the range typically studied. This highlights the
relevance of dr for small values of k. Third, dr decreases consistently to 0 as k grows
large. Note that dr essentially represents an upper bound for d, in the sense that non-
random data with the same M is expected to show d < dr. Consequently, the tail
behaviour of dr in 3 implies that d will also approach 0 as k grows large and, thus,
eventually undercut any local minimum present for smaller ks as shown in Figure 2.

The above results demonstrate the importance of accounting for dr when inferring
k∗ based on cluster instability. Following the interpretation of dr as the upper bound
of d, we propose to correct for dr by computing a normalized clustering instability
dn defined as

dn(ψa, ψb) =
d(ψa, ψb)

dr(ψa, ψb)
. (7)

2 Note that in the model-based approach the sum
∑K
i=1 ni is equal to the number of objects in the orig-

inal data set X, whereas in the model-free approach it is equal to the number of objects in the intersection
X̃α∩β,b of the two bootstrap samples.
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Fig. 3 Instability due to chance for randomly generated M for k ∈ {1, . . . , 100}. Simulation is based on
calculating instability for sets of M generated by randomly distributing 100 objects across k clusters. The
shaded squares in the background show the distribution in dr only due to variation in M for a given k.

The right panel of Figure 2 demonstrates how this new measure improves the identi-
fication of k∗. First, in comparison, to the unnormalized cluster instability, dn shows
a much more distinct drop at k = k∗ = 3 rendering the result less susceptible to
the influence of noise. Second, the path of the normalized cluster instability (dashed
line) does not decrease for larger k rendering k = k∗ = 3 a global optimum. Thus,
normalized cluster instability dn facilitates consistent estimation of k∗ across the en-
tire range of k. In the next section, we use numerical experiments to demonstrates the
benefit of using normalized cluster instability dn in realistic settings.

6 Numerical experiments

We now turn to numerical evaluation of the performance of unnormalized and nor-
malized instability-based methods across four scenarios. This will include a com-
parison of the both instability-based approaches to the performance of four popular
distance-based methods for selecting k∗.

6.1 Data generation

We generate data from Gaussian mixtures as illustrated in Figure 4. For the first
scenario with k∗ = 3, we distributed the means of three Gaussians with σ = .15
arranged at equal distances on a unit circle and sampled n = 50 from each Gaussian.
The second scenario with k∗ = 7, we distributed the means of seven Gaussians
with σ = .04 at equal distances on a unit circle and sampled n = 50 from each
Gaussian. This means that the total sample size of these two problems is 150 and 350,
respectively. We chose prime numbers and a circular layout to avoid local minima for
k < k∗. The third and fourth scenario used elongated clusters similar to those in
Tibshirani and Walther (2005): we generated n = 50 equally spaced points along the
diagonal of a 3-dimensional cube with side length [−5, 5], and added uncorrelated
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Gaussian noise (µ = 0 and σi = 0.1) to each data point. We then copy these data
points k∗ = 3 (scenario 3) or k∗ = 7 (scenario 4) times and place them along the
same line separated by a distance of 15. Similarly to above, the total sample size of
scenario 3 and 4 is 150 and 350, respectivey. We provide code to fully reproduce our
simulation results in the Online Supplementary Material. Columns three and four in
Figure 4 illustrate these elongated clusters in the first two dimensions, respectively.
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Fig. 4 First column: three Gaussians with σ = .1 and n = 50 placed on a circle; second column: seven
Gaussians with σ = .04 and n = 50 placed on a circle; third column: three elongated clusters in three
dimensions (only the first 2 shown); fourth column: seven elongated clusters in three dimensions (only the
first 2 shown).

6.2 Comparison plan

The main contribution of this paper is to improve existing stability-based methods.
Our goal of the numerical experiments is therefore to see whether normalized clus-
tering instability outperforms the unnormalized (standard) clustering instability in
detecting k∗.

However, to also learn about the relative merits of stability-based methods, we
compare their performance to the performance of popular distance-based methods
for k∗-selection. Note that these methods imply different definitions of a ’good’ clus-
tering (see introduction). Thus, strictly speaking the different methods solve different
problems. Nonetheless, in practice, all of these methods are applied for the same pur-
pose. In this context, the various methods can be understood as different heuristics
solutions to a given problem (here the 4 scenarios described in Section 6.1).

We consider the following four distance-based methods: the Gap Statistic (Tib-
shirani et al, 2001), the Jump statistic (Sugar and James, 2011), the the Silhouette
statistic (Rousseeuw, 1987), the Slope statistic (Fujita et al, 2014), and a Gaussian
mixture model. The Gap statistic simulates uniform data of the same dimensionality
as the original data and then compares the gap between the logarithm of the within-
cluster dissimilarity W (k) for the simulated and original data. It selects the k for
which this gap is largest. The Jump statistic computes the differences of the within-
cluster distortion at k and k−1 (after transformation via a negative power) to select k
that produced the largest differences in distortions. The Slope statistic is based on the
Silhouette statistic Si(), and selects k to maximize [Si(k)−Si(k−1)]Si(k)v , where
v is a tuning parameter. Finally, the Gaussian mixture model selects k as the num-
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ber of components in the mixture model yielding the lowest Bayesian Information
Criterion (BIC) (Schwarz et al, 1978).

6.3 Results

We evaluated the k-selection methods using the k-means clustering algorithm (Har-
tigan, 1975). The k-means algorithm was restarted 10 times with random starting
centroids in order to avoid local minima. Dick et al (2014) showed that 10 restarts
for k-means were sufficient for two clustering problems that match the problems
considered here in difficulty. For all methods, we considered the sequence k =
{2, 3, . . . , 50}. For the stability-based methods we use 100 bootstrap comparisons
(see Algorithm 1 and 2). To maximize comparability, we evaluated used the same
random seed for all instability-based methods (within the same iteration).

3 circular clusters, 2 dimensions
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32
Model-based (N) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Model-free 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 57
Model-free (N) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gap Statistic 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Jump Statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Slope Statistic 0 96 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gaussian Mixture 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 circular clusters, 2 dimensions
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Model-based (N) 0 0 0 0 0 87 13 0 0 0 0 0 0 0 0 0 0 0 0
Model-free 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Model-free (N) 0 0 0 0 0 91 9 0 0 0 0 0 0 0 0 0 0 0 0
Gap Statistic 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
Jump Statistic 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 92
Slope Statistic 0 0 0 0 0 31 17 18 18 9 5 1 0 0 1 0 0 0 0
Gaussian Mixture 0 0 0 0 0 99 1 0 0 0 0 0 0 0 0 0 0 0 0

3 elongated clusters, 2 dimensions
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Model-based (N) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Model-free 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Model-free (N) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gap Statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Jump Statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Slope Statistic 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gaussian Mixture 0 99 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 elongated clusters, 2 dimensions
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Model-based (N) 24 0 0 0 0 38 38 1 1 0 0 0 0 0 0 0 0 0 0
Model-free 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Model-free (N) 24 0 0 0 0 47 29 0 0 0 0 0 0 0 0 0 0 0 0
Gap Statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Jump Statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Slope Statistic 0 0 0 0 0 68 7 10 6 2 4 3 0 0 0 0 0 0 0
Gaussian Mixture 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1 Estimated number of clusters in four different scenarios for 100 iterations.
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Table 1 shows the estimated k̂ over 100 iterations for each of the four scenar-
ios and eight methods. Estimated k̂ ≥ 20 are collapsed in the category ’20+’. We
first focus on the results of the instability-based methods. For the first scenario with
k∗ = 3 circular clusters, the unnormalized instability-based methods perform poorly,
with about half of the estimates being correct, and the other half being in the category
’20+’. This poor performance is due to the unfavorable behavior illustrated in Figure
3 and Figure 2. The normalized instability methods, however, do not suffer from this
problem and accordingly show high performance. The pattern of results in the sce-
nario with k∗ = 7 is similar, but more pronounced. With the clustering problem being
more difficult, unnormalized stability methods fail to identify k∗ in every iteration,
whereas the normalized stability methods still successfully identify k∗ in the vast ma-
jority of cases. In scenario three with k∗ = 3 elongated clusters all instability-based
methods show maximum performance. Here the tail of the unnormalized instability
paths decays slowly enough preventing the trivial decrease instability to undercut the
local minimum at k = 3. In scenario four with k∗ = 7 elongated clusters, the per-
formance of the unnormalized methods drops to zero, whereas normalized instability
methods are still able to identify k∗ in a considerable amount of cases. Overall the
results show that the normalized instability-methods perform better than the unnor-
malized ones.

We now turn to the performance of distance-based methods. The clear winner
among this class of methods is the Gaussian mixture, which performs performs ex-
tremely well in all scenarios. Next, the Slope statistic performs reasonably well, how-
ever, the performance is much lower for k∗ = 7 than for k∗ = 3. The Gap statistic
shows maximal performance for the circular clusterings, but drops to zero in for the
elongated clusters. Finally, the Jump statistic fails entirely in all scenarios. The rea-
son for the bad performance of the Jump statistic is that its variance increases with
increasing k. See Appendix B for a detailed illustration of this problem.

Comparing stability- and distance-based methods, we find that stability-based
methods perform rather well. When using our proposed normalization, stability-based
methods outperform every distance-based method, except for the Gaussian mixture
methods. However, when using the unnormalized methods, it is almost always better
to use any of the distance-based methods. For additional comparisons between the
methods, consult Appendix A where we study small variations of scenario one and
two including additional noise dimensions.

Another noteworthy finding of our analysis is the near-equivalent performance
of the model-based and the model-free instability approaches (see Table 1). To ana-
lyze whether the two methods converge for large B, we ran both methods using the
scenario of Figure 2) over a increasing number of B ∈ {1, 2, . . . , 5000} bootstrap
comparisons. Figure 5 shows that although both methods seem to stabilize in a small
region around .038 they still show considerable variance even with 5000 bootstrap
samples. It is thus unclear whether the two methods converge, however, they may
converge for larger B.

Furthermore, we evaluated the correlation between the instability paths of both
approaches for the simulation reported in Table 1. They are between .98 and 1, sug-
gesting that the two methods show very similar performance.
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Fig. 5 Left: The average instability for fixed k = 3 up to bootstrap sample b for both the model-based (red)
and model-free (black) instability approach. The data is the one from in Figure 2. Right: The difference
between the two functions.

7 Conclusions

We have proposed a normalization for cluster-instability methods for the estimation
of k∗ and shown how it improves existing methods by controlling for the influence of
chance on cluster instability and enabling the identification of k∗ for the entire range
of k. Moreover, we have shown that instability-based methods, especially when using
the proposed normalization, can outperform established distance-based k-selection
methods. Finally, we have compared model-based and model-free variants of the
instability-based method and found them to be similar, but not identical.

These results speak to the usefulness of cluster instability as an approach for esti-
mating the number of clusters in a dataset. They also lead to two important questions
for future research. First, given the divergence of the model-based and model-free ap-
proaches, future research should study in closer detail the relative performance of the
two across different situations. Second, and more importantly, future research should
study potentially more appropriate corrections for the influence of chance on cluster
instability. As dr(ψa, ψb) depends on M , dr it will also be susceptible to factors in-
fluencing M such as the data generating mechanism P and the clustering algorithm.
While our numerical experiments demonstrate the usefulness of dn as defined here,
we see potential for more complex alternative corrections.
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A Additional Numerical Experiments

We show the results of two additional scenarios that are adapted from scenarios one and two in Section 6.3
by adding eight dimensions of uncorrelated Gaussian noise with standard deviations σ = .15 in scenario
one and σ = .04 in scenario two.
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3 circular clusters, 10 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51
Model-based (N) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Model-free 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96
Model-free (N) 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gap Statistic 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Jump Statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Slope Statistic 0 97 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gaussian Mixture 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 circular clusters, 10 dimensions

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20+

Model-based 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Model-based (N) 0 0 0 0 0 68 32 0 0 0 0 0 0 0 0 0 0 0 0
Model-free 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Model-free(N) 0 0 0 0 0 83 17 0 0 0 0 0 0 0 0 0 0 0 0
Gap Statistic 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0
Jump Statistic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
Slope Statistic 0 9 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Gaussian Mixture 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 Estimated number of clusters in different scenarios

The performance is qualitativly similar to the performance reported in the main text. However, per-
formance dropped for all methods as a result of the added noise, which rendered the clustering problem
more difficult.

B Path of Jump Statistic

One reason for the bad performance of the Jump statistic is that the variance of the jump size increasing as
k increases. We illustrate this problematic behavior of the jump statistic in Figure 6 using 100 iterations of
scenario one (three circular clusters) and two (seven circular clusters) from the main text.

The figure plots are the paths Jump statistic for each of the 100 iterations across k ∈ {2, 3, . . . , 10}.
We see that the variance of the Jump statistic paths clearly increases for larger k. This implies that similarly
to the unnormalized stability-based methods, the Jump statistic can only identify k∗, when the range of
possible k is restricted to a small range around the true k∗.
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Fig. 6 The jump-path along the sequence of considered k for each of the 100 simulation iterations. Left:
for the scenario with 3 true clusters in 2 dimensions. Right: for the scenario with 7 true clusters in 2
dimensions.
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