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There have been convincing suggestions in the litera-
ture (e.g., Landauer & Dumais, 1997; Lund & Burgess, 
1996; Patel, Bullinaria, & Levy, 1997) that psychologi-
cally relevant and plausible representations of word mean-
ing can be learned from exposure to streams of natural 
language. These claims have direct relevance to both the 
learning of lexical semantics by humans, and the use 
of such representations learned by computers but used 
in models of human psychological performance (e.g., 
Lowe & McDonald, 2000). The strongest claim is per-
haps that human infants can acquire representations of 
word meanings by building up and manipulating the word 
co- occurrence statistics of the speech/text streams they 
encounter. The basic idea is simply that words with simi-
lar meanings will tend to occur in similar contexts, and 
hence word co- occurrence statistics can provide a natural 
basis for semantic representations. Explicit simulations 
do show that vector space representations formed in this 
way can be used to perform remarkably well on various 
performance criteria, e.g., using simple vector space dis-
tance measures to carry out multiple-choice synonym 
judgments of the type used in Tests of English as a Foreign 
Language (TOEFL) (Landauer & Dumais, 1997; Levy & 
Bullinaria, 2001).

Obviously, co-occurrence statistics on their own will 
not be sufficient to build complete and reliable lexical 
representations (French & Labiouse, 2002). For example, 
without extra computational apparatus, they will never be 
able to deal with homophones and homographs—words 
with the same form but different meaning (e.g., Schütze, 

1998). Nor will they account for the human ability to learn 
the meaning of words from dictionaries or instruction. 
However, one can see how the statistical representations 
could form a computationally efficient foundation for the 
learning of semantic representations. A complete learning 
process might take the following form:

1. Iteratively update the word co-occurrence statistics 
as more training data (i.e., natural language usage) is 
encountered.

2. Process that information into an appropriate represen-
tation of semantics, possibly employing some form of di-
mensional reduction or other form of data compression.

3. Use supervised learning techniques to refine those 
representations, e.g., by separating homophones, or by in-
serting dictionary learned words.

If we can show that such computational procedures can 
create a useful lexical semantic representation from natu-
ral language input, then it is plausible to suggest that evo-
lution will have furnished humans with the ability to take 
advantage of these statistics. This, of course, still leaves 
us with the task of describing exactly how the human sys-
tem works, but understanding how in principle one best 
computes such representations is a necessary first step. In 
addition, although it is not the main focus of this article, 
understanding and following these human procedures may 
also be a good strategy for building artificial language 
processing systems.

There are numerous techniques in the literature that 
could be used to implement Stage 3, such as variations on 
the theme of learning vector quantization (LVQ), in which 
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representations generated by unsupervised clustering or 
learning methods are adjusted by supervised learning 
(Kohonen, 1997). Implementing procedures for perform-
ing the co-occurrence counts of Stage 1 is also straight-
forward, but it is unlikely that in humans the word counts 
would be collected first and then processed later. It is more 
likely that the three stages coexist, so that the acquisition of 
the representations would automatically occur in the grad-
ual on-line fashion observed. However, for the purposes 
of this article we shall assume that if we can come up with 
suitable formulations of the three stages independently, 
then they can be combined into a consistent and coher-
ent on-line whole using existing connectionist techniques 
(e.g., Bishop, 1995; Haykin, 1999), and any constraints 
from biological plausibility will be addressed at the same 
time. We are thus left with the task of specifying Stage 2.

The first major problem one faces is that there are many 
different types of statistics one could feasibly extract from 
the raw co-occurrence counts to build the vector space 
representations of word meanings, and it is not at all obvi-
ous which is best. This leads us on to the second major 
problem which is that it is not clear how one should mea-
sure the quality of the various possible representations. 
One can certainly try them out on various human-like 
language tasks, such as synonym judgments, but then it 
is not obvious how one should map the use of our com-
puter-based representations on to the way that humans 
employ them (e.g., Bullinaria & Huckle, 1997). Nor is 
it obvious that for building useful computer based repre-
sentations, we want to use them in the same way anyway. 
Our own preliminary investigations (Levy & Bullinaria, 
2001; Levy, Bullinaria & Patel, 1998; Patel et al., 1997) 
have indicated that the computational details which re-
sult in the best performance levels depend crucially on 
the details of the particular human-like task and on how 
exactly we implement it. This obviously makes it difficult 
to identify reliably the strengths and weaknesses of the 
whole approach in general. Fortunately, the more com-
plete analysis presented here reveals that once we identify 
our overall best approach, the results are much more con-
sistently good.

In the remainder of this article, we shall present our 
systematic exploration of the principal possibilities for 
formulating the word co-occurrence approach to word 
meaning representation. We begin with a brief overview 
of previous work in this area, and then outline the range of 
computational techniques and tests to be considered here. 
We then explore the importance of the various details by 
summarizing and discussing the key results we have ob-
tained using semantic vectors derived from the textual 
component of the British National Corpus (BNC), which 
consists of about 90 million words from a representative 
variety of sources (Aston & Burnard, 1998). The robust-
ness of these results is then tested with respect to corpus 
size and quality. We end with some more general discus-
sion and conclusions.

Previous Work on Co-Occurrence Statistics
Inspired by intuitions from linguistics (e.g., Saussure, 

1916; Firth, 1957), work in this area has taken place within 

the component disciplines of computational linguistics, 
information retrieval and the psychology of language. We 
shall now briefly outline some of the past work, empha-
sizing psychologically relevant results at a lexical level 
rather than higher levels of organization such as sentences 
or documents.

The work of Schütze and colleagues (e.g., Schütze, 
1993) showed how co-occurrence statistics of letter 4-
grams in relatively small corpora could be used to exam-
ine distances between lexical representations in a semanti-
cally relevant manner, and demonstrated the surprisingly 
large amount of information that is present in simple co-
 occurrence measurements. This “Word Space” model ex-
tracted the most statistically important dimensions from 
the co-occurrence statistics using singular value decom-
position (SVD), a well known statistical technique that 
has since been used in the work on LSA described below.

Finch and Chater (1992) used co-occurrence statistics as 
a basis for inducing syntactic categories. They looked at the 
co-occurrences of the 1,000 most frequent target words with 
the 150 most frequent context words using a two word win-
dow in a 40 million word USENET newsgroup corpus. The 
resulting vectors produced cluster analysis dendrograms 
that reflected a hierarchy of syntactic categories remarkably 
close to a standard linguistic taxonomy, including struc-
ture right up to phrases. They also found that some of their 
clusters exhibited semantic regularities. The most common 
150 words in a corpus of English are mostly closed class or 
grammatical function words. The use of such closed class 
word co-occurrence patterns to induce measures of seman-
tic similarity will be examined further below. This work was 
continued by Redington, Chater, and Finch (1998) using the 
CHILDES corpus of child-directed speech. More recently, 
Monaghan, Chater, and Christiansen (2005) have examined 
the different contributions of co-occurrence based and pho-
nological cues in the induction of syntactic categories from 
the CHILDES corpus.

Lund and Burgess (1996) have developed a related 
framework they call HAL (hyperspace approximation 
to language). Using the Euclidean distance between co-
 occurrence vectors obtained with weighted 10 word win-
dows in a 160 million word corpus of USENET newsgroup 
text, they were able to predict the degree of priming of 
one word by another in a lexical decision task. Their work 
showed how simple co-occurrence patterns from an easily 
available source of text can produce statistics capable of 
simulating psychological tasks at a lexical semantic level, 
without a great degree of pre-processing or manipulations 
such as dimensionality reduction. This group has gone on 
to use their method in several further studies (e.g., Audet 
& Burgess, 1999; Burgess & Conley, 1999).

McDonald and Lowe have also reported on the use 
of co-occurrence statistics as measures of semantic re-
latedness (e.g., Lowe, 2001; McDonald & Lowe, 1998). 
 McDonald and Shillcock (2001) describe a measure of 
“contextual similarity” based on co-occurrence statistics. 
Lowe and McDonald (2000) described the use of co-
 occurrence statistics to model mediated priming. Using 
a 10 word window, they selected the context word di-
mensions using an ANOVA to judge how consistent the 
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co- occurrence patterns were across different subcorpora. 
Using a rather conservative criterion, the method yielded 
536 context words. They ruled out a “stop-list” of 571 
words including closed class words and other mostly very 
common words that are usually seen as uninformative in 
the information retrieval literature.

Our own group has also reported methodological re-
sults using similar simple co-occurrence statistics. We 
have developed evaluation methods and used them to 
explore the parameter space of the methods underlying 
the use of  vector-based semantic representations (Levy 
& Bullinaria, 2001; Levy et al., 1998; Patel et al., 1997). 
We have found that the choice of window shape and size, 
the number of context words, and the “stop list” can have 
an enormous effect on the results, and that using simple 
information-theoretic distance measures can often work 
better than the traditional Euclidean and Cosine measures. 
One of the main aims of this article is to explore more 
systematically and fully the range of design choices that 
can affect the performance of these methods.

Landauer and Dumais have adopted a slightly different 
approach derived from information retrieval (Letsche & 
Berry, 1997) that they call latent semantic analysis (LSA), 
stressing the importance of dimensionality reduction as a 
method of uncovering the underlying components of word 
meaning. Landauer and Dumais (1997) is an important 
paper in this field as it demonstrated how simple word 
co-occurrence data was sufficient to simulate the growth 
in a child’s vocabulary and thus made a strong claim for 
the psychological utility of word co-occurrence. Using 
30,473 articles designed for children from Grolier’s Aca-
demic American Encyclopaedia, they measured context 
statistics using a window that corresponded to the length 
of each article or its first 2,000 characters. They then used 
an entropy based transform on their data and extracted 
the 300 most important dimensions using singular value 
decomposition (SVD), a procedure related to standard 
principal component analysis (PCA) that allows the most 
important underlying dimensions to be extracted from a 
nonsquare matrix. As well as providing further evidence 
that word co-occurrence data contains semantic informa-
tion that can be extracted, they showed how inductive 
learning from realistic language input can explain an in-
crease in performance that mirrors that of children in vo-
cabulary acquisition.

Landauer and Dumais (1997) demonstrated the utility 
of their framework by using it on the synonym portion of 
a Test of English as a Foreign Language (TOEFL). This 
test is described in full detail below, but essentially, for 
each of 80 target words, the word most closely related in 
meaning must be chosen from four other words. Their pro-
gram scored around 64% using the strategy of choosing 
the word with the largest cosine (i.e., smallest angular dis-
tance) between its derived co-occurrence vector and that 
of the target. They note that this score is comparable to 
the average score by applicants to U.S. colleges from non-
English speaking countries, and would be high enough 
to allow admission to many U.S. universities. They go on 
to show that the learning rate of their model mirrors the 
pattern of vocabulary acquisition of children and shows 

how a child can induce the rough meaning of a previously 
unseen word from its present context and a knowledge 
of past word co-occurrences. Their work is an important 
example of a detailed cognitive model that employs co-
 occurrence statistics to give a numerical fit to observa-
tional data.

The computational methods underlying LSA have been 
applied, developed and expanded further over the past de-
cade. This has included using LSA to model metaphor 
comprehension (Kintsch, 2000; Kintsch & Bowles, 2002); 
a model of children’s semantic memory built from an LSA 
analysis of a child corpus (Denhière & Lemaire, 2004); 
application to grading student essays (Miller, 2003); ap-
plication of different sources of knowledge on reasoning 
(Wolfe & Goldman, 2003); mathematical improvements 
to the LSA distance measure (Hu et al., 2003); potential 
improvements in the statistical methods underlying LSA 
(Hofmann, 2001); and many other studies.

The above brief and selective review demonstrates the 
variety of psychological areas of interest that models using 
co-occurrence statistics can be applied to. The approach 
has provided insights into developmental psychology (e.g., 
Landauer & Dumais, 1997; Hu et al., 2003; Monaghan 
et al., 2005), psycholinguistics (e.g., Lowe & McDonald, 
2000; Lund & Burgess, 1996), neuropsychology (e.g., 
Conley, Burgess, & Glosser, 2001), as well as more tech-
nological applications that may have potential relevance 
to psychology, such as information retrieval (Deerwester 
et al., 1990) and word sense disambiguation/synonymy 
recognition (e.g., Burgess, 2001; Schütze, 1998; Turney, 
2001). The models for all these domains depend upon 
an empiricist perspective of inducing linguistic gener-
alities from language input. The results we report in this 
article are significant in that they demonstrate various 
optimalities in the design and parameter space for these 
statistical methods, and so strengthen the theoretical un-
derpinnings of the models based on this approach. The 
need to compare semantic representations arising from 
different approaches and parameters has been discussed in 
a more general setting by Hu et al. (2005). Here we are not 
so much interested in measures of the similarity between 
different semantic spaces, as measures of how well each 
possible corpus based vector space performs as a semantic 
representation.

We must note that there remains some controversy con-
cerning the use of word co-occurrence statistics as the 
basis for representing meaning in humans. Glenberg and 
Robertson (2000) attack HAL and LSA for not solving 
Harnad’s (1990) symbol grounding problem. Their alter-
native is an embodied approach where meaning depends 
on bodily actions and the affordances of objects in the 
environment. Any purely symbolic approach including 
theories based on word co-occurrence is judged to be 
inadequate in that they never make contact with the real 
world, relying only on internal relations between symbolic 
representations. They reject the solution offered for this 
problem by Landauer and Dumais (1997), of encoding 
co-occurrence between perceptual events and words or 
other perceptual events, because this has not yet been im-
plemented in approaches such as HAL or LSA. Burgess 
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(2000), in his reply to Glenberg and Robertson (2000), 
champions models where meaning is represented as high 
dimensional vectors derived from word co-occurrence for 
being explicit and transparent. He reasons that Glenberg 
& Robertson’s experimental data showing that one imple-
mentation of LSA cannot account for flexible judgments 
(such as the plausibility of filling a sweater with leaves as 
a substitute for a pillow, as against filling a sweater with 
water) are unfair tests because the LSA vectors had not 
been derived from relevant “experiences.” Burgess also 
points out that HAL and LSA are purely representational 
models, and do not describe the necessary processing ma-
chinery for taking advantage of the knowledge derived 
from accumulating co-occurrence patterns. 

French and Labiouse (2002) also rightly claim that co-
occurrence patterns on their own cannot account for all 
aspects of “real-word semantics.” They argue that with-
out the use of aspects of world knowledge and the flex-
ibility of use of context that can change the meaning of 
a word or phrase, co-occurrence cannot capture subtle 
uses of language such as lawyers being more likened to 
sharks than kangaroos, or that an Israeli minister is more 
likely to have a Jewish sounding name than a Palestin-
ian one. Without training a model on the appropriate 
language material that might give it a chance to pick up 
this kind of information, we would like to reserve judg-
ment on how well co- occurrence statistics could capture 
such meanings, but we agree that it is unlikely that word 
co-occurrences alone are enough to capture all aspects 
of semantics. We simply claim that it is surprising how 
much they can capture, that they are a good candidate 
source for inducing word roles as we can demonstrate that 
a significant amount of semantic information is present 
and available for extraction using simple computational 
means, and that they provide a solid foundation for more 
complete representations.

Computing the Co-Occurrence Vectors
Generating the raw word co-occurrence counts is sim-

ply a matter of going through a large spoken or written 
corpus and counting the number of times n(c,t) each con-
text word c occurs within a window of a certain size W 
around each target word t. We shall assume that the corpus 
is used in its raw state, with no preprocessing, thus giv-
ing us a conservative estimate of the performance levels 
achievable. Humans may well make use of simple trans-
formations, such as stemming or lemmatization (Manning 
& Schütze, 1999, p. 132), as they experience the stream of 
words, and thus form better representations than our basic 
counting approach. For example, they might improve their 
performance by making use of the kind of grammatical 
knowledge that tells us that “walk” and “walked” are mor-
phologically and thus semantically related. Our aim here 
is to conduct computational experiments with a view to 
arriving at some general guidelines for extracting the best 
possible lexical semantic information from a given cor-
pus. This will provide the basis for more psychologically 
plausible models and theories, yet avoid the need to make 
specific claims and assumptions about the details of those 

systems before we understand the range of computational 
possibilities.

Naturally, the word meanings will be independent of the 
corpus size, so the counts are normalized to give the basic 
semantic vector for each word t which is just the vector of 
conditional probabilities
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(i.e., all components are positive and sum to one). The 
individual word frequencies in the corpus are

 
f t

W
n c t f c

W
n c t

c t

( ) ( , ), ( ) ( , )1 1

—that is, the summed co-occurrence counts divided by 
the number of times each word gets counted (the window 
size W); and the individual word probabilities are
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—that is, the word frequencies divided by N, the total 
number of words in the corpus.

Clearly the window around our target word can be de-
fined in many ways (e.g., Lund & Burgess, 1996). We 
could just use a window to the left of (i.e., before) the 
target word, or just to the right (i.e., after), or we could 
have a symmetric window that sums the left and right 
counts, or we could have vectors that keep the left and 
right counts separately. We can have flat windows in 
which all word positions are counted equally, or windows 
in which the closest context words count more than those 
more distant—for instance, in a triangular or Gaussian 
fashion. One could easily come up with further variations 
on this theme. The effect of these variations is one of the 
implementational details we shall explore later.

To judge how useful these basic co-occurrence vectors 
are for representing semantics, we need to define some 
independent empirical tests of their quality. There are two 
aspects to this:

1. How reliable are the vectors from a statistical data 
acquisition point of view? For example, to what extent 
will different representations emerge from distinct subsets 
of the corpus. This can be tested using only the training 
data—that is, only information in the corpus itself.

2. How well do the “semantic vectors” provide what we 
expect of a semantic representation? To test this we need 
comparisons against external measures of what we know 
a good semantic representation should be able to do, e.g., 
based on human performance on suitable tasks.

A systematic exploration of these points will give us 
clues as to what further processing might be appropriate, 
and how feasible the whole approach is. It will also pro-
vide some useful guidelines on appropriate implementa-
tional details which can then inform the development of 
specific models and theories.

Validating the Semantic Representations
Clearly, there are countless empirical tests that one 

might employ to estimate the semantic validity of our rep-
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resentations. In this article, we shall present results from 
four tests that have been designed to probe different as-
pects of the corpus derived vectors:

TOEFL (Test of English as a Foreign Language). 
This is a much studied performance measure based on 
words taken from real TOEFL tests used by universities 
in the USA (Landauer & Dumais, 1997). It consists of 
eighty multiple choice judgments on the closest meaning 
between a target word and four others (e.g., which of the 
following is closest in meaning to enormously: appropri-
ately, uniquely, tremendously or decidedly). This test was 
helpfully provided by Tom Landauer, and we converted 
the spelling of a few of the words to match our UK English 
corpus. It was implemented by computing the distances 
in our semantic space between the target and each of the 
four choice words, and counting the number for which the 
correct word is closest to the target.

Distance Comparison. This is similar to the TOEFL 
test in that it involves multiple choice similarity judgments, 
but rather than test fine distinctions between words, many 
of which occur very rarely in the corpus, it is designed test 
the large scale structure of the semantic space using words 
that are well distributed in the corpus. It involves 200 tar-
get words and the comparison is between one semantically 
related word and ten other randomly chosen words from 
the 200 pairs (e.g., typical related words are brother and 
sister, black and white, lettuce and cabbage, bind and tie, 
competence and ability). The performance is the percent-
age of control words that are further than the related word 
from the target word.

Semantic Categorization. This test is designed to 
explore the extent to which semantic categories are rep-
resented in the vector space. It measures how often in-
dividual word vectors are closer to their own semantic 
category center rather than one of the other category cen-
ters (Patel et al., 1997). Ten words were taken from each 
of 53 semantic categories (e.g., metals, fruits, weapons, 
sports, colors) based on human category norms (Battig & 
Montague, 1969), and the percentage of the 530 words that 
fell closer to their own category center rather than another 
was computed.

Syntactic Categorization. This test examines whether 
syntactic information can be represented in the same vec-
tor space as semantics, or if a separate vector space is 
required. The degree to which word vectors are closer 
to their own syntactic category center rather than other 
category centers is measured (Levy et al., 1998). One 
hundred words were taken for each of twelve common 
parts of speech, and the percentage of the 1200 words 
that fall closer to their own category center than another 
was computed.

It is immediately clear that each of these tests relies 
on the definition of some form of distance measure on 
the space of semantic vectors. Again there are many pos-
sibilities. Three familiar and commonly used geometric 
measures are

Euclidean
 

d t t p c t p c t
c

1 2 1 2
2

1 2

, | | ,
/

City Block  d t t p c t p c t
c

1 2 1 2, | | ,

and

Cosine
  

d t t1 2,

1
1 2

1 1

p c t p c t

p c t p c t

c

c

| . |

| . |
1 2

2 2

1 2/ /

| . |

.

p c t p c t
c

Euclidean and City Block are well known Minkowski 
metrics. Cosine is one minus the cosine of the angle be-
tween the two vectors, and measures the similarity of the 
vector directions, rather than the positions in the vector 
space (Landauer & Dumais, 1997). Given that the vec-
tors are probabilities, it is quite possible that information 
theoretic measures such as

Hellinger
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Kullback–Leibler
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could be more appropriate (Zhu, 1997). The Hellinger and 
Kullback–Leibler measures have already been shown to 
work well in previous studies (Levy & Bullinaria, 2001; 
Patel et al., 1997).

There are a number of natural alternatives to the raw 
probabilities p(c | t) that we should also consider for our 
semantic vectors. Perhaps the most widely considered 
(e.g., Church & Hanks, 1990; Manning & Schütze, 
1999) is the Pointwise Mutual Information (PMI) which 
compares the actual conditional probabilities p(c | t) for 
each word t to the average or expected probability p(c); 
that is,

i c t
p c t

p c
p c t

p t p c
( , ) log

( | )
( )

log
( , )

( ) ( )
.

Negative values indicate less than the expected number 
of co-occurrences, which can arise for many reasons, 
including a poor coverage of the represented words in 
the corpus. A potentially useful variation, therefore, 
is to set all the negative components to zero, and use 
only the Positive PMI. There are many other variations 
on this theme, such as various odds ratios (e.g., Lowe, 
2001) and the entropy based normalization used in LSA 
(Landauer & Dumais, 1997). Here we shall just consider 
the simplest of these—namely, the simple probability 
ratio vectors
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or just the PMI without the logarithm (which we shall 
simply call Ratios). We still need to compute distances 
between these new vectors i(c,t) and r(c,t), but they are 
no longer probabilities, so it makes little sense to use the 
information theoretic measures, and we restrict ourselves 
to using the geometric measures with them.

The BNC corpus contains tags representing syntactic 
classes and so on, which naturally do not exist in most 
written and spoken contexts, so for our experiments on 
the semantic tasks these are removed. Furthermore, all 
punctuation is removed, leaving a corpus consisting only 
of a long ordered list of words. Our results are therefore 
conservative, not relying on any other mechanisms such as 
sentence comprehension. For the syntactic clustering task, 
the syntactic tags are retained in order to generate the syn-
tactic category centers. In both cases, it is then straightfor-
ward to read through the cleaned corpus generating all the 
necessary counts in one pass.

We have already noted many factors that need to be 
explored systematically. To begin with, we have the win-
dow shapes and sizes, the type of vectors we start with, 
and the distance metrics we use with them. Then we can 
see from the above equations that some depend on the 
low frequency context words more than others, and given 
that statistical reliability depends on reasonably high word 
counts, we might get better results by removing the com-
ponents corresponding to the lowest frequency context 
words. We need to explore how best to do this. Then we 
need to determine the effect of the corpus size, which will 
naturally affect how reliable the various vector compo-
nents are. All these factors are likely to be related, and 
also depend on the kind of task we are using our vectors 
for. Clearly we cannot present all our results here, but it 
is possible for us to present a selection that gives a fair 
picture of which aspects are most important, and the main 
interactions between them.

We shall start by looking at the best performance we can 
get for each of our four test tasks for the various compo-
nent types and distance measures. This points us to which 
is best overall, and we can then concentrate on that for pre-
senting our exploration of the other factors. We then con-
sider the statistical reliability of the semantic vectors, and 
how the task performances depend on window shape, size 
and type, and on how many vector components are used. 
We end by studying the effect of changing the size and 
quality of the corpus, and see how the task performances 
change when much smaller corpora are available.

Varying the Component Type 
and Distance Measure

The various factors discussed above all interact and all 
depend on the performance measure that is being used. 
We have performed a fairly exhaustive search across the 
various parameter configurations, and shall begin by plot-
ting the overall best performance found on each task using 
the full BNC text corpus for each of the various vector 
component types and distance measures. We shall then 

look in more detail at the various factors and parameters 
that were optimized to give those best performance levels. 
Figure 1 shows the best performance histograms ordered 
by performance. The default component type for each dis-
tance measure is the probabilities p(c|t), and we also con-
sider the PMI, Positive PMI, and Ratios components for 
use with the geometric distance measures. For the three 
semantic tasks we see that there is a clear best approach: 
Positive PMI components with the Cosine distance mea-
sure. This also works well for the syntactic clustering, 
making it the best approach overall. Ratio components 
with Cosine distances is also pretty good. The other ap-
proaches are more variable in performance.

The Positive PMI results here compare extremely well 
with results from our own and others’ previous work. For 
the TOEFL task, we obtain a score of 85.0%. This com-
pares, for example, with our previous best result of 75.0% 
using raw probability components and the Hellinger dis-
tance metric (Levy & Bullinaria, 2001), 73.8% by Turney 
(2001), who used a PMI distance metric on probability 
components computed by search engine queries over the 
entire WWW, 64.4% by LSA using a much smaller corpus 
and SVD dimensionality reduction (Landauer & Dumais, 
1997), and 64.5% as an average score by non-English 
speaking applicants to U.S. universities (Landauer & 
Dumais, 1997). It is perhaps surprising that such a sim-
ple algorithm performs so well on TOEFL, as well as the 
other three tasks. This demonstrates how much informa-
tion there is available in mutual information statistics of 
word co-occurrences.

Given that there is such a clear best approach, which we 
shall see later is even clearer for smaller corpus sizes, it 
makes sense to concentrate on Positive PMI components 
with the Cosine distance measure in our discussion of the 
influence of the various parameter choices.

Statistical Reliability
Having got an idea of the best performing semantic vec-

tors we can hope to get from our corpus, we now look 
at some of the properties of these vectors. It is appropri-
ate to begin by considering the reliability of these vec-
tors from a purely statistical point of view. Clearly, using 
small random samples of real text is going to introduce 
errors into any estimation of the probabilities, and since 
children are exposed to quite small data sets, this could be 
problematic if this kind of technique is to account for an 
empiricist mechanism of first language acquisition. We 
can get an estimate of the likely statistical variations by 
comparing the vectors generated from two distinct halves 
of the corpus.

The upper graphs of Figure 2 compare the Positive 
PMI vectors obtained from two halves of the full BNC 
corpus, using a co-occurrence window consisting of one 
word on each side of the target word. The same word set 
was used as for the Distance Comparison task discussed 
above. On the left we plot the Cosine distances between 
the vectors generated from the two distinct subcorpora for 
each target word, and compare those with the distances 
between the vectors for each target word and a seman-
tically related word and an unrelated control word. The 
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horizontal axis shows the word count (i.e., frequency) of 
the target word in the corpus. As one would hope, the dis-
tances between target and control words are larger than 
those between semantically related words, which in turn 
are greater than those between identical words. The dif-
ferences are even clearer in the plots of the distance ratios 
shown in the graphs on the right. Control/Related ratios 
greater than one correspond to a successful semantic relat-
edness distinction and good performance on our semantic 
tasks. Same/Related ratios of less than one indicate good 
statistical reliability of the vectors.

From a statistical point of view, one would expect the 
vector quality to be better for large corpus sizes and for 
high frequency words. We can see both these effects clearly 
in Figure 2. The upper graphs correspond to two 44.8 mil-
lion word halves of the full BNC corpus. The lower two 
graphs correspond to two 4.6 million word subcorpora, 
which correspond to the corpus size in the Landauer & 
Dumais (1997) study. On the left, the best fit lines for the 

three classes show clear word count effects, with smaller 
related and same word distances for higher frequencies 
and larger corpora. On the right, the pattern is clearer in 
the ratio plots, and we can see how the semantic vector 
quality is compromised if the word frequency or corpus 
size becomes too small.

We can conclude that our vectors do show reasonable 
statistical reliability, and exhibit the expected effects of se-
mantic relatedness, word frequency and corpus size. It also 
appears that the performance degrades gracefully as the 
corpus size is reduced toward that of typical human experi-
ence, but we shall need to look at that in more detail later.

Varying the Context Window
The plots in Figure 2 were based on the simplest co-

occurrence counts possible, namely a window of a single 
word on each side of the target word. The most obvious 
variation is to extend this window to include W words on 
each side (a rectangular window). It is also natural to con-

Figure 1. The best performance obtained on the four tasks for each of the vector types and distance measures.
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sider the context words to be more important the closer 
they are to the target words, in which case we can give 
them a weighting that falls off linearly with distance from 
the target word (a triangular window). A similar Gaussian 
weighted window would also be natural, though we shall 
not look at that here. Another possibility is that the closest 
words to the target words might be more syntactically than 
semantically relevant, and so we might do well to exclude 
them from the window (an offset rectangular window).

Figure 3 shows how the performance on our four test 
tasks depends on the window size and shapes. Using Posi-
tive PMI Cosine, a symmetrical rectangular window of 
size one produces the highest score in each case, apart 
from the TOEFL task where a triangular window of size 
four is slightly better. There is a general trend for the 
triangular windows to produce plots that are essentially 
equivalent to rectangular windows of a smaller size. For 
the best performing Positive PMI Cosine case, a fairly 

Figure 2. Cosine distances between Positive PMI vectors from two corpora for the same word, semantic related words, and unrelated 
control words (left graphs), and the ratios of those distances for individual words (right graphs). Two corpora sizes are used: 44.8 mil-
lion words (upper graphs), and 4.6 million words (lower graphs).
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clear picture emerges in which performance is best for 
window size one, and the offset rectangular windows are 
not a good idea at all. For the less successful vector and 
distance types, the pattern is much less clear. The Prob-
ability Euclidean case illustrates this in Figure 3. Some-
times the offset rectangular window is best (for semantic 
clustering), sometimes far worse than the others (TOEFL 
and syntactic clustering), and the optimal window size is 
different for each task.

The change in performance as one varies the window 
size can be understood as a consequence of the trade-off of 
the increased context information, higher word counts and 
better statistical reliability for larger windows, against the 
increased likelihood of irrelevant and misleading context 
information being included in the counts. It is not surprising 
then, that the trade-off and optimal window type and size 
depends on the vector component type and distance measure 
employed, and we shall see later that it is also affected by 
the number of vector components used and the size of the 
corpus. It is interesting that here using Positive PMI Cosine 
we achieve the best performance levels for all tasks using 
minimal window sizes, whereas in previous work with less 

effective vector types and distance measures (Levy et al., 
1998; Patel et al., 1997), we concluded that minimal win-
dows were only appropriate for syntactic tasks, and that 
larger window sizes were better for semantic tasks, with no 
clear optimal window size for all such tasks. This shows the 
importance of a full systematic study such as this, and may 
have implications for theories of the implementation of such 
algorithms in psychological or neural models where only 
minimal buffer size or working memory storage would ap-
pear to be necessary to extract useful information.

The Number of Vector Components
A reasonable sized corpus, such as the 89.7 million 

word BNC corpus, will contain of the order of 600,000 
different words types which will each give rise to one 
component for each of our vectors. If we rank these words 
in order of frequency of occurrence in the corpus, we find 
the familiar Zipf’s law plots seen in Figure 4, in which the 
log of each word’s frequency falls almost linearly with the 
log of its position in the frequency ordered word list. This 
reflects a common feature of natural languages whereby 
there are very few very high frequency words and very 

Figure 3. Performance on the four tasks as a function of window size and shape for two representative vector types and distance 
measures.
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many very low frequency words. Good estimates of the 
probabilities that make up our semantic vector compo-
nents will require reasonably high frequencies for both the 
target and context words. In the same way that we earlier 
saw that low frequency target words had less reliable vec-
tors, it is likely that the components corresponding to low 
frequency context words will also be unreliable, and if we 
use a distance measure (such as Euclidean) which treats 
all the components equally, this could result in poor per-
formance. A straightforward way to test this is to order the 
vector components according to the context word frequen-
cies and see how the performance varies as we reduce the 
vector dimensionality by removing the lowest frequency 
components. Although this will remove the least reliable 
components, it also means that the probabilities will no 
longer sum to one, and we may be removing useful infor-
mation from the distance measure. This is a trade-off that 
will clearly need empirical investigation.

Figure 5 shows how the performance on our four tasks 
depends on the number of components used for Positive 
PMI Cosine for window size one. It also shows the effect 
of treating the left and right context words separately to 
give four different rectangular window types: a window 
of one word to the left of the target (L), a window of one 
word to the right (R), a window consisting of one word on 
the left and one on the right (L R), and a double length 
vector containing separate left and right window com-
ponents (L&R). The general trend here is that the more 
components we use, the better, and that the L&R style 
vectors work best (though for the semantic tasks, only 
slightly better than L R). For the TOEFL task, which 
contains a number of rather low frequency words, we do 
find a slight fall off in performance beyond around 10,000 
components, but for the other tasks we are still seeing im-
provements at 100,000 components. Such a pattern is not 
general, however. For less efficient component types and/
or distance measures, the performance can fall off drasti-
cally if we use too many lower frequency components. For 
example, Figure 6 shows this clearly for the Euclidean 
distance measure with the Positive PMI components. This 

is more like the dependence on vector dimension found in 
the work of Landauer and Dumais (1997), though the peak 
here is around 1,000 dimensions of raw co-occurrence 
data rather than 300 dimensions derived using SVD.

There are other ways in which one might reasonably at-
tempt to improve performance by reducing the number of 
vector components, and we have looked at some of these 
in more detail elsewhere (Levy & Bullinaria, 2001). First, 
it is common practice in the information retrieval litera-
ture to exclude a “stop list” of closed class and other pre-
sumed uninformative words from consideration as context 
dimensions (Manning & Schütze, 1999). We have found 
that this practice actually results in a significant reduction 
in performance, and should thus be avoided. The utility 
of closed class or grammatical words can be estimated by 
looking at scores for the first 150 or so dimensions cor-
responding to the highest frequency words in English, as 
these are largely those that would be excluded by use of a 
stop list. We can see in Figure 5 that these words alone are 
able to achieve a TOEFL score of around 65%.

Another idea is to order and truncate the context words 
according to the variance of their components across all the 
target words in the corpus (Lund & Burgess, 1996), rather 
than by frequency. We found there to be such a strong corre-
lation between such variance and word frequency anyway, 
that this approach gives very similar results to the frequency 
ordering, and so one might just as well use the frequency 
ordering and avoid the need to compute the variances.

Our results here have obvious implications for neural 
and psychological model building. Methods such as Posi-
tive PMI Cosine automatically make good use of the less 
statistically reliable dimensions corresponding to the lower 
frequency context words, and thus obviate the need for 
any dimensional reduction or other manipulations of the 
raw vector space. However, if there exist implementational 
reasons (e.g., related to neural or cognitive complexity) 
for using other methods, for which detrimental effects can 
arise from the lower frequency context words, then these 
will clearly need to be addressed by incorporating addi-
tional mechanisms.

Figure 4. Zipf’s law plots of log word frequency against log of word position in a frequency ordered list, for the untagged and tagged 
versions of the BNC corpus.
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Dependence on Corpus Size
Clearly, the larger the training corpus, the more represen-

tative it is likely to be, and thus the more reliable the statis-
tics for the low frequency words and components. We have 
already seen this explicitly in Figure 2. We also know that 
our full corpus size is more than most children will experi-
ence, and so if one needs a corpus this large for the learning 
of lexical semantic information, this simple method alone 
will not be adequate to account for human performance. 
Fortunately, it is straightforward to explore the effect of cor-
pus size by slicing up the BNC corpus into disjoint subsets 
of various sizes and repeating the above experiments.

Figure 7 shows how the best performance levels fall 
for our four tasks as we reduce the corpus size. Note the 
logarithmic scale, and that even for corpora of around 90 
million words, the TOEFL and semantic clustering results 
are still clearly improving with increased corpus size. The 
distance and syntactic clustering tasks are close to ceiling 
performance at 90 million words. Human children will be 
lucky to experience 10 million words, and performance on 
all the semantic tasks deteriorate significantly when the 
corpus size is reduced that much. With 4.6 million words 
from the BNC Corpus, the performance on the TOEFL 
task is 60.4%  4.4%, compared with 64.4% obtained in 

the Landauer and Dumais (1997) study using a different 
corpus of that size.

We have seen that using the Positive PMI Cosine 
method, performance increases as the corpora get larger, 
and that the semantic clustering and syntactic clustering 
appear to be particularly sensitive to small corpus sizes. 
This demonstrates how investigations such as ours can 
constrain neural and cognitive model building, in that 
we may find the performance is unrealistically low with 
realistic levels of learning material. It could be that this 
indicates the need to incorporate more powerful statistical 
inductive techniques such as the dimensionality reduction 
used in LSA (Landauer & Dumais, 1997).

Corpus Quality
Another factor that will surely affect the quality of the 

emergent semantic representations is the quality of the 
corpus they are derived from. We have already seen, in 
Figure 7, a large variance in results from distinct subsec-
tions of the BNC corpus. Some of this variance is due 
to the statistical variations evident in Figure 2, but much 
is due to quality issues. For example, the BNC corpus is 
designed to represent a range of different sources (Aston 
& Burnard, 1998), which results in good vectors for the 

Figure 5. Performance on the four tasks, for four different rectangular window types, as a function of the number of frequency 
ordered vector dimensions, for Positive PMI components and the Cosine distance measure.
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corpus as a whole, but it also results in some subsections 
having unusual word frequency distributions, and others 
with significant portions of nonstandard English (such as 
having “picture windows” written as “pitcher winders”), 
both of which will result in poor vectors from those sec-
tions. We need to look more carefully at the effect of poor 
quality corpora, and test the intuition that increased quan-
tity could be used to compensate for poor quality.

A ready source of “poor quality English” is provided 
by Internet-based newsgroups, and so we created a 168 
million word corpus from a random selection of such mes-
sages on a particular day in 1997. We did this by down-
loading the raw files, removing duplicate messages, file 
headers, nontext segments, and punctuation, to leave a 
simple word list in the same format as our de-tagged BNC 
corpus. We could then repeat the experiments carried out 
on the BNC corpus. The lack of tags precluded using the 
syntactic clustering test, and there was insufficient usage 
of too many TOEFL words to give reliable results for that 
test. Figure 8 shows the results on the semantic clustering 
and distance comparison tests for various sized newsgroup 
corpora, compared with corresponding BNC subsets. At 
all corpus sizes we see a massive reduction in performance, 
and increase in variability, for the newsgroup corpora, and 

the increase in quantity required to achieve comparable 
performance levels is considerable.

This dependence on corpus quality will naturally have 
enormous consequences for modeling human perfor-
mance. It is clearly not sufficient to match the quantity of 
language experienced between human and model, one has 
to match the quality too.

Results for Smaller Corpora
The reduced performance and increased variability 

found for small corpora leads us to consider whether the 
general trends observed above still hold for much smaller 
corpora. Landauer and Dumais (1997) used a 4.6 million 
word corpus derived from the electronic version of Gro-
lier’s Academic American Encyclopedia. This is likely to 
be a more representative corpus than the similar sized ran-
dom subsections of the BNC corpus used for Figure 7, and 
should thus be of better “quality” in the sense discussed 
above. We therefore used that corpus to repeat the main 
semantic task experiments presented earlier. The lack of 
tagging precludes using it for the syntactic task, but the 
variation in that case across BNC subcorpora is relatively 
small, so a typical BNC subset of the same size was used 
instead for that task.

Figure 6. Performance on the four tasks, for four different rectangular window types, as a function of the number of frequency 
ordered vector dimensions, for Positive PMI components and the Euclidean distance measure.
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Figure 7. The best performance on each task as a function of corpus size for Positive PMI components and Cosine distance measure. 
The error bars show the variation over different subcorpora from the full BNC corpus.
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Figure 9 shows the histograms of best performance for 
each vector type and distance measure, for comparison 
with Figure 1. We do see changes in the orderings, but for 
the semantic tasks Positive PMI Cosine is still the clear 
best performer, and Ratios Cosine is still second best. For 
the syntactic clustering Ratios Cosine is again the best ap-
proach. Comparison with Figure 7 shows that the Grolier 
corpus does give us much better performance than similar 
sized BNC subcorpora: 72.5% compared with 60.4%  
4.4%, and the 64.4% obtained in the Landauer and Dumais 
(1997) study. This confirms how the quality of the corpus, 
as well as the computational method, affects the results, 
and it is gratifying that a more psychologically realistic 
corpus shows better performance.

In Figure 10 we summarize the main effects of window 
size and vector dimensions for the Positive PMI Cosine 
case, for comparison with the results in Figures 3 and 5. 
For syntactic clustering the performance falls off sharply 
with window size as for the full BNC corpus, but for the 
semantic tasks the dependence is more variable. For the 
distance comparison task, the dependence is still rather 
flat, but there is a clearer peak at window size two. For se-
mantic clustering the dependence is again rather flat, and 
the peak has shifted to around window size eight. For the 

TOEFL task, window size two is now best, with a fairly 
sharp fall off for larger windows. As far as the number 
of vector components go, we get similar patterns here to 
those found for the larger BNC corpus, with a general 
trend for more components being better, except for very 
large numbers of components for the TOEFL task.

These results demonstrate that, although some of our op-
timal details (such as vector type and distance measure) are 
robust across different conditions, others (such as window 
size) do vary depending on factors such as corpus size, qual-
ity of corpus, and nature of the task. Although the main vari-
ations are understandable from a theoretical point of view 
(e.g., for smaller corpora, larger windows provide larger 
word counts and thus reduce the statistical unreliability of 
the vector components), they do have obvious implications 
for building models of human performance.

Discussion and Conclusions
The computational experiments that we have reported 

in this article provide further confirmation that useful in-
formation about lexical semantics can be extracted from 
simple co-occurrence statistics using straightforward dis-
tance metrics. The technological implications are clear and 
have already been demonstrated elsewhere, namely that 
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there is a great deal of information available for the tak-
ing, and that it may be useful for many applications, such 
as word sense disambiguation and information retrieval. 
However, our focus here has been on the use of such an 
underlying framework in psychological theorizing. Here 
as well, previous studies have shown numerous potential 
applications. Nevertheless, we would argue that it is useful 
to step back before any particular methodology becomes 
favored or fashionable, and fully explore the available pa-
rameter space. We have presented here a more detailed and 
systematic exploration of the relevant parameters and de-
sign details than is evident in previous studies.

Our experiments have demonstrated that a simple 
method based on vectors with components that are the 
positive pointwise mutual information (PMI) between the 
target words and words within a small context window, and 
distances computed using a standard cosine, is remarkably 
effective on our three benchmark semantic tasks and one 
syntactic task. Small windows are found to be the most ef-
fective, closed class words do provide useful information, 
low frequency words do add useful information for most 
tasks, and corpus size and quality are important factors. 
We note also that for our best performing co- occurrence 
statistics, dimensionality reduction is not necessary to 
produce some excellent results. A prime example is our 
analysis of the TOEFL task where, for a 90 million word 
corpus, we achieve a best performance of 85%, and show 
exactly how the performance falls off (but is still useful) as 
we vary the parameters away from the best values we have 
found. Once we settle on the best approach we have found, 
namely Positive PMI components and Cosine distances, 
the optimal parameter values are fairly robust across differ-
ent tasks and corpora, but for other approaches, the results 
appear to be much more variable.

We have limited our experiments to the simplest manip-
ulations, preferring to understand these before committing 
ourselves to more complex assumptions. This means that 
this work is entirely methodological, and need not in itself 
contradict the conclusions drawn by models of psycholog-
ical phenomena that have already been developed, such as 

the Landauer and Dumais (1997) model of children’s word 
meaning acquisition from text input at school. Rather, we 
are claiming that it is important to fully understand how 
variations in parameters and design affect the success of 
the method, so that the details of a particular model can 
be fully justified. For example, window size might mirror 
the constraint of a working memory component, and cor-
pus size and quality may constrain how realistic a source 
corpus must be for training a model so that it accurately 
mirrors genuine human experience. For model and theory 
building in psychology and cognitive science, knowledge 
about optimal parameter values is undoubtedly useful, but 
need not be totally constraining. What is important is that 
we understand how parameters that are constrained by our 
knowledge of neural or cognitive systems, such as the na-
ture of language experience, working memory capacity or 
the learning algorithms that underlie the computation of 
co-occurrence or pairwise distance computations, might 
affect the efficiency of lexical information induction.

We hope, now that the simplest forms of extracting 
semantic information from co-occurrence patterns have 
been systematically studied, that the methodology can be 
extended to include constraints from further sources of 
knowledge. It is likely that, if co-occurrence patterns 
are used as a source of information for inducing lexi-
cal semantic constraints, then knowledge of syntax and 
morphology is also used. This would mean that the com-
putational experiments we have outlined here could be ex-
tended to explore the effects of lemmatizing or stemming 
(reducing the forms of words to their basic forms so that 
walk, walking, walks, and walked would all be counted as 
instances of walk), or that the part of speech of a word that 
can be induced from parsing a sentence could be used to 
count the different syntactic usages of a word separately 
(e.g., bank as a noun or verb). Extra information from per-
ception could also be included, either as something for a 
word to co-occur with (Landauer & Dumais, 1997), or as 
a completely separate source of information that is com-
bined with simple lexical co-occurrence in order to learn 
more flexibly and perhaps to ground the representations 

Figure 8. The best performance on each task as a function of corpus size and quality for Positive PMI components and Cosine dis-
tance measure. The error bars show the variation over different subcorpora.
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induced from simple co-occurrence. Cue combination is 
claimed to be necessary to solve problems that appear to 
be simpler than the learning of meaning, for example, the 
learning of word segmentation (Christiansen, Allen, & 
Seidenberg, 1998), and it would appear likely that multi-
ple sources of information are required for learning about 
meaning.

A final suggestion for extending what co-occurrence 
patterns might account for, is to take advantage of the fact 
that not all learning is unsupervised. Humans do more 
than process streams of word co-occurrences—they are 
also taught word meanings, use dictionaries, and learn 
from many other sources of information. Learning algo-
rithms in the neural network literature tend to be either 
supervised or unsupervised, but these methods can be 
combined (O’Reilly, 1998). For example, an unsuper-
vised self- organizing map (SOM) can be refined using 
supervised learning vector quantization (LVQ) methods 
(Kohonen, 1997). In the same way, we can refine our basic 

corpus derived representations described above by any 
number of supervised techniques. One simple approach 
could be to define a total distance measure D between 
members of sets of synonyms S  {si} with vector com-
ponents v(si, c),

 

D v s c v s ci j

cs s SS i j

, , ,
,

2

and then use a standard gradient descent procedure 
(Bishop, 1995) to reduce that distance—that is, update 
the vectors using (si,c)  D/ (si,c) for a suitable 
step size . A similar approach could be used to minimize 
any well defined measure of performance error. Making 
sure that measure is sufficiently representative, and that 
the step size is not too disruptive, will not be easy, and in 
practice, quite sophisticated variations on this theme are 
likely to be required, but this is an aspect of this field that 
will certainly be worth pursuing in future.

Figure 9. The best performance on the four tasks for each of the vector types and distance measures, for the smaller 4.6 million word 
Grolier corpus.
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