
Watts & Strogatz model
duw

10/22/2019

The goal of this assignment is evaluate the Watts-Strogatz model (WS) by running Watts & Strogatz’ (1998)
key simulation showing the impact of p on clustering and shortest path lengths.

Overview
This assignment contains of 4 steps.

1. Place your model inside a function.
2. Run the simulation.
3. Control for the results of a regular lattice.
4. Plot the results.

Step I - Create function
1. The first step of running the simulation involves putting the Watts-Strogatz model into its a function.

A function in R can be created using the code below.
function_name <- function(ARGUMENT1, ARGUMENT2, ARGUMENT3){

CODE_HERE

}

2. In order to get your simulation into a function, you need to do three things. First, place your Watts
& Strogatz code in-between the curly brackets (inplace of CODE_HERE). If you don’t have a running
version of the model, use this one:

get edges
edges = matrix(ncol = 3, nrow = size * max_dist)
ind = 0
for(i in 1:(size-1)){

for(j in (i+1):size){
dist = min(j - i, abs((j-size)-i))
if(dist <= max_dist){

ind = ind + 1
edges[ind,] = c(i, j, dist)
}

}
}

sort edges by distance
edges = edges[order(edges[,3],edges[,1],edges[,2]),]

fill matrix
network = matrix(0, ncol = size, nrow = size)
network[edges[,1:2]] = network[edges[,2:1]] = 1

rewire
for(i in 1:nrow(edges)){

1

if(runif(1,0,1) < p){
new_end = sample(1:size,1)
if(new_end != edges[i, 1] & network[edges[i,1], new_end] == 0){

network[edges[i,1], edges[i,2]] = network[edges[i,2], edges[i,1]] = 0
network[edges[i,1], new_end] = network[new_end, edges[i,1]] = 1
}

}
}

3. Now, change the names of ARGUMENT1, ARGUMENT2, and ARGUMENT3 to the names of the three objects
that control the size of the network, the neighborhood size (i.e., max_dist), and the probability of
rewiring (in that order).

4. Finally, change the name of the function to watts_strogatz. That’s it. You now can run your function
like any other.

5. Try running watts_strogatz(10, 2, .2). Does it work? Does the resulting matrix appear correct?
If not, try to find the error before you proceed.

Step II - Simulate
1. In their simulation, Watts and Strogatz varied the probability of rewiring edges to evaluate its impact

on clustering and average shortest path length. To do the same, we need to find a way to run the same
model for different values of the rewiring probability. Solution: A for-loop. We begin by defining values
for the rewiring probability using ps <- seq(start, end, step) where start is the smallest value,
end the largest, and step the step-size of the sequence. Choose start and end to be .00001 and 1,
and step size to be some number that produces, for now, no more than say 10 or 20 values.

2. Now create a loop that iterates over those ps and another one inside that loop that repeats the
simulation for each value in ps exactly n times. Just like the code below. Chose n to be a small number,
say 10, for now. Later you can increase it to increase the precision of your simulation. Alright, you got
the backbone of your simulation.

n = 10
for(i in 1:length(ps)){

for(j in 1:n){

CODE_HERE

return(network)
}

}

3. Let’s figure out how to calculate clustering and shortest path lengths. To do this, we want to use
the igraph package. Once you installed the package (install.packages('igraph')) and loaded it
(library(igraph)), you can use graph_from_adjacency_matrix() to load the matrix produced by
your watts_strogatz-function into the igraph format. That is, assuming your network is an object cre-
ated from watts_strogatz, use graph_from_adjacency_matrix(network, mode = 'undirected')
and assign the result to a new object called igraph_network.

4. Now you can use the igraph functions transitivity() and average.path.length() on the new
igraph_network-object to compute clustering and average shortest path length. In thetransitivity()
function, make sure to set type to "localaverage" to compute the type of clustering that Watts &
Strogatz used.

5. Ok, now you pretty much got all the ingredients. What’s left is storing the results. Create a 2-column
matrix with the number of rows set to n * length(ps) and call it result. Also create an index

2

object and set it to 1. Note both need to be defined before the loops. Then inside the inner loop
assign the result of transitivity() to result[index, 1] and the result of average.path.length()
to result[index, 2] and, finally, set index to index + 1.

6. Now, you are essentially ready to run the simulation. Before starting it, however, I recommend placing
an print(i) between the inner and outer loop. This will help you keep track of the progress of the
loop. Now, run the simulation once with network size equal to 10 and max_dist equal to 2. If it
takes to long, reduce the length of ps and/or the value of n. If it runs fine, set the values of size and
max_dist to what Watts & Strogatz used in their simualtion.

Step III - Normalization
1. Take a look at the Watts and Strogatz’ paper again. You will notice that they do not show the

raw clustering coefficients and average shortest path length, but those normalized by the results
of the regular lattices. Obtain the necessary normalization constants, by creating networks using
watts_strogatz(size, max_dist, p = 0) - remember p = 0 means regular lattice - and evaluating
its clustering and shortest path length using the same functions as before. Store the results as C0 and
L0, respectively.

2. Now normalize the simulation results using result[, 1] <- result[, 1] / C0 and result[, 2] <-
result[, 2] / L0.

Step IV - Aggregate & Plot
1. Ok, you ran the simulation, got results, normalized them, and now its finally time to inspect the results.

First, aggregate the results of the repeated simulations. Do this using agg_C <- tapply(res[,1],
rep(ps, rep(n, length(ps))), mean) and, respectively, the same for the average shortest path
lengths. Now, plot the relationship between ps and agg_C using plot(ps, agg_C, type = 'l', ylim
= c(0, 1), log = 'x'). Then run lines(ps, agg_L), which will add a dashed line for the average
shortest path lengths. What do you see? Does it look the same as in Watts & Strogatz (1998)?

require(igraph)

watts_strogatz = function(size = 10, max_dist = 2, p = 0){

get edges
edges = matrix(ncol = 3, nrow = size * max_dist)
ind = 0
for(i in 1:(size-1)){

for(j in (i+1):size){
dist = min(c(abs(j - i),abs((j - size)-i)))
if(i != j & dist <= max_dist){

ind = ind + 1
edges[ind,] = c(i, j, dist)
}

}
}

sort edges by distance
edges = edges[order(edges[,3],edges[,1],edges[,2]),]

fill matrix
network = matrix(0, ncol = size, nrow = size)
network[edges[,1:2]] = network[edges[,2:1]] = 1

rewire

3

for(i in 1:nrow(edges)){
if(runif(1,0,1) < p){

new_end = sample(1:size,1)
if(new_end != edges[i, 1] & network[edges[i,1], new_end] == 0){

network[edges[i,1], edges[i,2]] = network[edges[i,2], edges[i,1]] = 0
network[edges[i,1], new_end] = network[new_end, edges[i,1]] = 1
}

}
}

network
}

simulate
ps <- seq(.00001, 1, length = 20)
n = 10
res = matrix(ncol = 2, nrow = length(ps) * n)
ind = 0
for(i in 1:length(ps)){

print(i)
for(j in 1:n){

ind = ind + 1
network <- watts_strogatz(1000, 10, ps[i])
igraph_network = graph_from_adjacency_matrix(network, mode = "undirected")
res[ind, 1] = transitivity(igraph_network, type = 'localaverage')
res[ind, 2] = average.path.length(igraph_network)

}
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12
[1] 13
[1] 14
[1] 15
[1] 16
[1] 17
[1] 18
[1] 19
[1] 20
normalize
network_0 = graph_from_adjacency_matrix(watts_strogatz(1000, 10, 0), mode = "undirected")
res[,1] = res[,1] / transitivity(network_0, type = 'localaverage')
res[,2] = res[,2] / average.path.length(network_0)

4

aggregate & plot
agg_C = tapply(res[,1], rep(ps, rep(n, length(ps))), mean)
agg_L = tapply(res[,2], rep(ps, rep(n, length(ps))), mean)

plot
plot(ps, agg_C, type = 'l', ylim = c(0, 1), log = 'x')
lines(ps, agg_L, lty = 2)

1e−05 1e−03 1e−01

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ps

ag
g_

C

5

	Overview
	Step I - Create function
	Step II - Simulate
	Step III - Normalization
	Step IV - Aggregate & Plot

