
Watts & Strogatz model
duw

1/9/2019

The goal of this assignment is to program the Watts-Strogatz model (WS) and to validate their findings
presented in Figure 2 of Watts and Strogatz (1998).

Overview
The WS model consists of 4 steps:

1. Find edges - Edges of the regular neighborhood lattice are identified and stored in an edge-list.
2. Order edges - Edges are ordered according to their distances and positions in the ring.
3. Fill network - Empty matrix representing the network is filled with edges.
4. Re-wiring - Move through the ring of nodes and rewire edges with probability p.

Here is how Watts and Strogatz (1998) describe their model:

Random rewiring procedure for interpolating between a regular ring lattice and a random network, without
altering the number of vertices or edges in the graph. We start with a ring of n vertices, each connected to its
k nearest neighbours by undirected edges. (For clarity, n = 20 and k = 4 in the schematic examples shown
here, but much larger n and k are used in the rest of this Letter.) We choose a vertex and the edge that
connects it to its nearest neighbour in a clockwise sense. With probability p, we reconnect this edge to a vertex
chosen uniformly at random over the entire ring, with duplicate edges forbidden; other- wise we leave the edge
in place. We repeat this process by moving clockwise around the ring, considering each vertex in turn until
one lap is completed. Next, we consider the edges that connect vertices to their second-nearest neighbours
clockwise. As before, we randomly rewire each of these edges with probability p, and continue this process,
circulating around the ring and proceeding outward to more distant neighbours after each lap, until each edge
in the original lattice has been considered once. (As there are nk/2 edges in the entire graph, the rewiring
process stops after k/2 laps.) Three realizations of this process are shown, for different values of p. For p =
0, the original ring is unchanged; as p increases, the graph becomes increasingly disordered until for p = 1,
all edges are rewired randomly. One of our main results is that for intermediate values of p, the graph is a
small-world network: highly clustered like a regular graph, yet with small characteristic path length, like a
random graph. (p. 441)

Step I - Find edges
Before you start this take a look at the netork on the next page and think of this illustration, while you work
through the instructions.

1. This is the hardest step. It requires that we iterate (loop) twice over the nodes of a network to
determine their distances and to then include edges for nodes whose distance is smaller than a certain
neighborhood size. Let’s begin by considering how many edges we can expect. Let’s assume, as in
Watts and Strogatz description, a circle of 20 nodes and that we want to connect each node to their 4
closest neighbors, that is, to the two nodes 1 step on the circle apart and the two nodes 2 steps on the
circle apart. This means, for instance, that we want to add edges connecting node 1 to node 2, 3, 20,
and 19, or node 11 to node 12, 13, 10, and 9. Following this logic, it is relatively straightforward to
determine the total number of edges to be included in the circular network: 20 nodes each connected
to 4 neighbors means 20 * 4 connections and (20 * 4)/2 edges because each edge is counted twice
(in an undirected network, the edge between 1 and 2 is the same edge as the one between 2 and 1).
Knowing the total number of edges, let us create a matrix with as many rows as there are edges and 3
columns. The columns represent edges by two numbers, the two numbers representing the two nodes
that the edge binds together (columns 1 and 2), and the distance of the two connected nodes (column

1

1). Remember: empty matrices can be created using matrix() using the nrow and nrow arguments.
Create the matrix and call the resulting object edges.

1

2

3

4
567

8

9

10

11

12

13

14
15 16 17

18

19

20

2. Next, we need to use loops tp iterate through the matrix in order to create edges. Remember: loops
take the form for(i in sequence){} with the sequence being some iterable object, such as a vector
or a list, and the {} delimiting the location for the code to be repeated. In our case, this the iterable
object is a vector containing the index of nodes. As nodes indices are all values from 1 to the size of the
network, it is easy ti create such a vector using the colon operator, i.e., 1:size. In our loop, we bow
want to iterate over 1:size not only once but twice (using two loops), so that we iterate over possible
pairs of nodes. Therefore, we need two loops, one outer loop and one inner loop, such as shown below:

for(i in 1:(size-1)){
for(j in (i + 1):size){

CODE HERE

}
}

The example code may first look somewhat surprising. Why iterate through 1:(size-1) in the first loop and
through (i+1):size in the second loop? Think about it! What would happen if we would iterate through
1:size in both loops? Assume size was only 3, then this would mean we would create the following pairs of i
and j: (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3). Thus, we would not only
include every pair twice, but we would also include edges of nodes with themselves, i.e., (1, 1) (2, 2) (3, 3).

3. Ok, now let’s think about what we want to achieve in terms of the code that is run at iteration of our
loops, that is, what shall we put in place of “CODE HERE”. Our goal is to identify edges that connect
nodes which - with respect to the circle of nodes - are no more than a certain number of steps apart.
How to determine distance? That’s easy! The nodes are numbered from 1:size and placed in order
along the circular layout, such that node 1 and node 2 are one step away, node 1 and node 3 are two
steps away, and node 3 and node 7 are 4 steps away. Thus, we can easily determine the distance of
nodes by calculating the difference between the respective node indices. That is with some exceptions.
Consdider the node with index size (e.g., 20). Adjacent to this node is the node with index 1. Thus,
they are only one step away, but their numeric difference would indicate that they are size - 1. In
order to fix this, we have to consider not only the difference j - i but also the difference (j - size)

2

- i. Furthermore, we have to take the absolute of the differences, so that we are only observing positive
distances. Thereby, we are taking account of the fact that the distance between every pair of nodes can
be determined clock-wise and counter-clockwise. The true (shortest) distance is then the minimum of
the two distances, thus distance = min(clock-wise_distance, counter-clockwise_distance).

4. Once the distance between pairs of nodes are determined based on i and j, we can figure out whether
the distance is smaller or equal to the maximum distance max_distance allowed. We can evaluate
this via an if-statment. Remember if-statements take the form if(logical_comparison){} with
logical_comparison encompassing a comparison of two values, in our case the observed distance and
max_distance. Given that the observed distance should be smaller than max_distance or equal, we
use distance <= max_distance.

5. If a distance is indeed smaller than max_distance, we need to include an edge for the pair of nodes in our
edges matrix. We do this by indexing the matrix at the next open slot for an edge, i.e., matrix[index,
] and assign to it a vector containing i, j, and distance. To define index in each step, we can have R
increment the an value every time a new edge was stored in the edges object. That is, before we begin
with looping we define an index with value 1 and then everytime we found an edge we add 1 to it, i.e.,
index = index + 1. See the code example.

index = 1
for(i in 1:(size-1)){

for(j in (i + 1):size){

CODE HERE

if(CODE HERE){

CODE HERE

index = index + 1
}

}
}

6. All that’s left is to put everything together and run the code.

Step II - Order edges
1. The next step is to order the edges according to their distance, with short distances first, and then by

node number. I.e., we want to order by ord = order(edges[, 3], edges[, 1], edges[, 2]). The
resulting vector of indices in ord we then use to bring the edges object in the right order by placing
ord in the row entry of the matrix index, i.e., the first position of edges[ord,] and reassign the
object to itself. Step complete.

Step III - Fill network
1. Now we want to fill a network. To do this we first create an empty matrix with data = 0, nrow =

size, and ncol = size and call it network. Every position in this matrix represent the presence or
absence of an edge between the row’s node and the column’s node. In the beginning, all values are zero
indicating that there are no nodes. The challenge is now to add 1s whenever two nodes are connected
with an edge. The easiest way to do this is by making use of the fact that one can use matrices to index
other matrices, i.e., matrix[matrix] (Note that there is no comma). This means we can use the first
two columns of edges, i.e., edges[,1:2] to index the empty network and assign to the selection the
value one. Do this also for edges[, 2:1] in order to fill the other half of the matrix.

3

Step IV - Re-wiring
1. The final step is a bit more challenging again. The goal of this step is to iterate through the ordered

materix edges, for every edge decide whether it needs to be rewired or not, and if it has to be rewired,
rewire it. To achieve this, we begin with a loop that iterates through 1:nrow(edges), i.e., from 1 to
the number of edges.

2. Next we have to decide whether a particular edge needs to be rewired by sampling a random number
between 0 and 1 and evaluating whether it is smaller than our predefined probability p_rewire of
rewiring. We can draw such a random number using runif(1, 0, 1), which draws 1 value from a
uniform distribution defined by endpoints 0 and 1. Using the random draw, we then decide whether it
is smaller than p_rewire using an if-statement, i.e., if(random < p_rewire){}.

3. To rewire, we first need to figure out where-to to rewire to. To select a new end node, draw a random
number using sample(1:size, 1), which draws one random number from the sequence 1:size. Then
we test - in an if-statement - whether this random number is different from the first node in the current
row in edges, i.e., edges[i, 1]. If it is then we discontinue, because we don’t want nodes to be
connected to themselves. If it is not the same node, then we want to test whether the new node is not
already connected to the current start node (edges[i, 1]). Again, if it is, we discontinue. That is
before we actually rewire, we need to perform two logical tests and we want both to be negative. To
test both at the same time, the two tests can be combined using a logical AND, in R &, i.e., if(test_1
& test_2){}.

4. Finally, if all hurdles are passed, we change the orginal edge in the network to 0 and the new edge to 1.
Thus, both, network[edges[i,1], edges[i,2]] and network[edges[i,2], edges[i,1]], need to
be set to 0 and both, network[edges[i,1], new_end] and network[new_end, edges[i,1]], need
to be set to 1. Rewiring done.

Last step - Network plot
1. To check out whether everything works, plot your networks for different values of p_rewire. To plot

the network, we need to get the network first into an igraph object. ìgraph is a powerful network
science R package that provides a lot of functionality including creating decent looking network plots.
To do this, install the package and then apply igraph::graph_from_adjacency_matrix(network,
mode = "undirected") and store the result as graph.

2. Now you can use igraph::plot.igraph(graph, layout = igraph::layout_in_circle(graph)) to
create a plot of your graph.

4

	Overview
	Step I - Find edges
	Step II - Order edges
	Step III - Fill network
	Step IV - Re-wiring
	Last step - Network plot

