PsychoNet pt.2

duw

11/12/2018

The goal of this assignment is apply random walks to your social network to simulate the spread of information
and to appreciate problems associated with measuring social distance.

Overview

This assignment consists of 2 steps.

1. Build random walker.
2. Study random walker results.

Step I - Create random walker

1. The first step of creating a random walker is to create a function that identifies the neighbors of node i.

Doing this is relatively straightforward using the adjacency matrix of the social network: A row i of the
adjacency matrix codes which nodes j are connected (represented by 1) and which are not connected
(represented as 0) to node i. That is, all you need to do is to identify the locations where the row has
value 1. This can be done using the which() function. Specifically, which(row == 1) will return the
indices at which a row object (containing a row of the adjacency matrix) is equal to 1. Use this to
create a simple function called get_neighbors() that returns all neighbors for any node i using the
template below.

define get meighbors function
get_neighbors <- function(index, network){

get meighbors
row <- XX
neighbors <- XX

return
neighbors

}

define get meighbors function
get_neighbors <- function(index, network){

##
##
##
##

get neighbors
row <- network[index,]

neighbors <- which(row == 1)

return

neighbors

}

2. Now make sure that the function works. This should be results when using the function to retrieve the

neighbors of 'Rosita Thigpen'.

Mohammed Prentice Leandro Winter Deandre Talbert
6 36 53

Kasie Dickson Jenee Arsenault Jin Villareal

54 55 56

Ashlie Peebles Harmony Edmonds Elly Tyner

57 58 59
#it Edgardo Silver Carlyn Mchenry Bianca Clifford
60 61 62
Hallie Brant Walker Mullis Velva Burley
#H# 63 64 65
Clarine Iverson Delicia Mcfarland Tanner Whitley
66 67 68
#i# Cassy Martino Pearly Christiansen

69 70

3. The next step is to randomly sample a neighbor. You already have the means to select the set of
neighbors. To sample a random neighbor means to pick one neighbor from the set of neighbors by
random. This can be done using the sample ()-function. The sample ()-function takes the set from
which to choose from as the first argument and the number of to-be-chosen elements as the second
argument. l.e., sample(neighbors, 1) gives you one randomly chosen neighbor. Try it out!

neighbors <- get_neighbors('Rosita Thigpen', social_network)
sample (neighbors, 1)

Edgardo Silver
60

4. Ok, now put sample(neighbors, 1) and get_neighbors() together into a new function named
get_neighbor () (singular).
define get meighbors function
get_neighbor <- function(index, network){

CODE HERE

}

define get metghbors function
get_neighbor <- function(index, network){

get nmeighbors
row <- networkl[index,]
neighbors <- which(row == 1)

return
if (length(neighbors) == 1){
neighbors
} else {
sample (neighbors, 1)
}
}

5. Using the get_neighbor ()-function, you can now set up the random walker function that repeatedly
applies the get_neighbor () function to traverse the network. This is done by using at every step the
newly drawn neighbor as the new index. Begin writing a function called random_walk that takes three
arguments, the index, the network, and the maximum number of steps n_steps.

define get meighbors function
random_walker <- function(index, network, n_steps){

CODE HERE

}

6. Inside the function, now create a loop that repeats the get_neighbor () while inidices change. That is
get_neighbor () is first exectued for index, then for the node returned by get_neighbor () and so on
until n_steps have been performed. While iterating over 1:n_steps store the visited nodes in vector
and return it at the end of the function.

define random walker function
random_walker <- function(index, network, n_steps){

set start index
current_node <- index

set container
nodes = c()

loop until n_steps

for(i in 1:n_steps){
current_node = get_neighbor(current_node, network)
nodes[i] = current_node

}

return
nodes

Step II - Study random walker
Feel free to choose any of the tasks (or all).

A. Which node is most visited by random walks? Try it out: let the random walker run (for a long time,
e.g., n_steps > 1000) and evaluate how often every node occurrs. Use sort(table()) Which nodes has
the most visits? Does it matter where the random walker was started? Compare the results to the centrality
measure results from the previous assignment.

start node
i = which(rownames(social_network) == 'Rosita Thigpen')

count visits
result = random_walker(i, social_network, 10000)
tab = sort(table(result))

extract most wvisited mode
rownames (social_network) [as.numeric(names(tab)) [1]]

[1] "Claris Comer"

B. How many steps are needed, on average (i.e., not the shortest distance), to get from point i to point j? Try
it out: (a) choose two nodes, (b) choose one of them to be the start node, (c) let the random walker run for a
large number of steps, and (d) evaluate how many steps it took to get to the other chosen node. Evaluate this
using min (which(sequence == j)) which will give the first time at which the j-th node was visited in the
sequence of nodes (produced by the random walk). E.g., min(which(random_walker(1l, social_network,
1000) == 2)). Do the numbers match your expectations? What is the average number of steps needed to
connect two distant nodes?

get start nodes
which(rownames(social_network) == 'Rosita Thigpen')
which(rownames(social_network) == 'Marianela Deaton')

i =

get distances

dis

tances

cO

for(k in 1:100){

}

##
##

##
##

##
##

distances[k] = min(which(random_walker(i, social_network, 1000) ==
in min(which(random_walker (i, social_network, 1000) == j)):
arguments to min; returning Inf
in min(which(random_walker(i, social_network, 1000) == j)):
arguments to min; returning Inf
in min(which(random_walker (i, social_network, 1000) == j)):
arguments to min; returning Inf
in min(which(random_walker(i, social_network, 1000) == j)):

##
##

Warning
missing

Warning
missing

Warning
missing

Warning
missing

arguments to min; returning Inf

show distances
hist(distances, breaks = 20)

Frequency

C. How long does it take for the random walk to cover 50% of the nodes depending on the start node. Try
it out: choose a start node and then let it run for a certain number of steps. Each time count how many
different nodes have been covered using length(unique (sequence)). Play around how many steps does it

10

Histogram of distances

in

no

no

no

no

non-

non-

non-

non-

0 200 400 600 800

distances

roughly need to cover half the network. Does it matter where you start?

start node and number of steps
i = which(rownames(social_network) == 'Rosita Thigpen')
n_steps = 600

get number of wvisited nodes
sizes = c()
for(k in 1:100){
sizes[k] = length(unique(random_walker (i, social_network, n_steps)))

}

show proportion of wistted nodes
hist(sizes / nrow(social_network), breaks = 20)

Histogram of sizes/nrow(social _network)

15 20 25 30

Frequency

10

5
I

11 -

I I I I I I
0.3 0.4 0.5 0.6 0.7 0.8

0
I

sizes/nrow(social_network)

D. (Advanced) Viewing task B as a model of information spreading or communication, the implementation
essentially assumed that every person merely talked to a single other person. In reality, however, people talk
to to more than one person, possibly even their entire neighborhood? Try to create code that evaluates how
the number of visited nodes changes as a function of how many nodes each node communicates whith. Be
careful, this problem can easily become very computationally intensive (i.e., start with small numbers).

start node
talkers = which(rownames(social_network) == 'Rosita Thigpen')

get spreading function
spreading_activation = function(start, n_comm, n_steps){

setup
talkers = start
visited = c()

simulate

for(i in 1:n_steps){
new_talkers = c()
for(j in 1:length(talkers)){
neighbors = get_neighbors(talkers[j], social_network)
if (length(neighbors) > n_comm) neighbors = sample(neighbors, n_comm)
visited = unique(c(visited, neighbors))
new_talkers = unique(c(new_talkers, neighbors))
}
talkers = new_talkers
}
visited

}

get results
length(spreading_activation(l, 4, 4))

[1] 14

	Overview
	Step I - Create random walker
	Step II - Study random walker

