NLP - Assignment 2

In this assignment you will. ..

e learn how to do tokenization using the tidytext package.

Load text into R

The first task of this assignment consists of reloading your book and extracting the main text from the book.

1) Load your book using read_file().

load text
text <- read_file('grimm.txt')

2) Rerun all of the steps up to and including the step, in which you extract the main text from the
document (task 4 in the Tokenize section of the previous assignment).

define regex
regex <- '*{3}[:print:]**{3}'

cut text into sections
text_split = str_split(text, '*{3}[:print:]**{3}')

get sections
sections <- text_split[[1]]

select main text
main_text <- sections[2]

Tokenize using tidytext
1) Create a tibble from you text using the code below.

create tibble
text_tbl <- tibble(text = main_text)

2) Use the pipe operator %>% to compute the number of characters in the string using the code below.

compute the number of characters using the pipe
text_tbl %>’ nchar()

text
530064

The above example illustrates a different way of passing on an (the first) argument to a function. While
this may not yet seem very practical now, you will soon see how this style of coding makes it easy to create
efficient analysis pipelines.

3) Use unnest_tokens() function of the tidytext package (don’t foget library (tidytext)) to tokenize
the text. The function takes three main inputs the data (tbl), a name for variable that should contain
the tokens (output, e.g., word), and the variable that contains the text to be tokenized (input). Using
the pipe, specify the latter two arguments and tokenize your text.

tokenize the text
text_tbl %>%
unnest_tokens(output = XX,
input = YY)

tokenize the text
text_tbl %>%
unnest_tokens (output = word,
input = text)

A tibble: 101,660 x 1

word

<chr>

1 produced
2 by

3 emma

4 dudding
5 john

6 bickers
7 and

8 dagny

O fairy

10 tales

... with 101,650 more rows

4) unnest_tokens () makes tokenization into words really easy. It even allows tokenization into sentences
using the token argument (see 7unnest_tokens. Tokenize into sentences rather words using the
template below.

tokenize the text
text_tbl %>%
unnest_tokens (output = XX,
input = YY,
token W7 7)

tokenize the text
text_tbl %>
unnest_tokens (output = word,
input = text,
token = "sentences")

A tibble: 4,537 x 1

#it word

#i#t <chr>

1 produced by emma dudding, john bickers, and dagny fairy tale~
2 contents: the golden bird hans in luck jorinda and ~
3 how they went to the mountains to eat nuts 2.

4 how chanticleer and partlet went to visit mr korbes rapunzel ~
5 the turnip clever hans the three languages the fox an-~
6 these apples were always counted, and about the time when they began t~
7 the king became very angry at this, and ordered the gardener to keep w~
8 the gardener set his eldest son to watch; but about twelve o’clock he ~
O then the second son was ordered to watch; and at midnight he too fell ~

10 then the third son offered to keep watch; but the gardener at first wo-~
... with 4,527 more rows

5) Take a look at the result. Has unnest_tokens() done its job?

6) Insert a new step into the analysis pipeline that creates a new variable containing indices for the
different sentences. See below. Now the usefulness of pipes should become clear.

tokenize the text
text_tbl %>%
unnest_tokens (output = XX,
input = YY,
token = "ZZ") %>%
mutate(sent_ind = 1:n())

tokenize the text
text_tbl %>%
unnest_tokens (output = word,
input = text,
token = "sentences") %>%
mutate(sent_ind = 1:n())

A tibble: 4,537 x 2

word sent_ind
<chr> <int>
1 produced by emma dudding, john bickers, and dagny £~ 1
2 contents: the golden bird hans in luck jor~ 2
3 how they went to the mountains to eat nuts 2. 3
4 how chanticleer and partlet went to visit mr korbes rapu~ 4
5 the turnip clever hans the three languages t~ 5
6 these apples were always counted, and about the time when the-~ 6
7 the king became very angry at this, and ordered the gardener ~ 7
8 the gardener set his eldest son to watch; but about twelve o’~ 8
9 then the second son was ordered to watch; and at midnight he ~ 9

—
o

10 then the third son offered to keep watch; but the gardener at~
... with 4,527 more rows

7) Now use unnest_token() another time to tokenize the sentences into words. The results of this should
be a tibble() containing two variables, one coding the sentence from which the words came from and
another coding the actual words. Store the tibble in an object called token_tbl.

define regezx

token_tbl = text_tbl %>V
unnest_tokens(sentence, text, token = "sentences") %>%
mutate(sentence_ind = as.character(1:n())) %>%
unnest_tokens(word, "sentence")

This is it, for now. Next, session we will pick up from here to compare word vectors and conduct semantic
analyses.

	Load text into R
	Tokenize using tidytext

